Real-world data of Brazilian adults with X-linked hypophosphatemia (XLH) treated with burosumab and comparison with other worldwide cohorts

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
CILLO, Antonio Cesar Paulillo de
SILVA, Barbara Campolina C.
DALVA, Catarina Brasil
CARVALHO, Erico Higino de
ALMEIDA, Juliana M. C. M. de
MARQUES, Larissa L. M.
RIBEIRO, Marcia
SILVA, Mauro Borghi M. da
MEDEIROS, Paula Frassinetti V. de
Citação
MOLECULAR GENETICS & GENOMIC MEDICINE, v.12, n.2, article ID e2387, 27p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Disease-related variants in PHEX cause XLH by an increase of fibroblast growth factor 23 (FGF23) circulating levels, resulting in hypophosphatemia and 1,25(OH)(2) vitamin D deficiency. XLH manifests in early life with rickets and persists in adulthood with osseous and extraosseous manifestations. Conventional therapy (oral phosphate and calcitriol) improves some symptoms, but evidence show that it is not completely effective, and it can lead to nephrocalcinosis (NC) and hyperparathyroidism (HPT). Burosumab (anti-FGF23 antibody) has shown to be effective and safety in the clinical trials. Methods: The current real-world collaborative study evaluated genetic, clinical and laboratory data of XLH Brazilian adult patients treated with burosumab. Results: Nineteen unrelated patients were studied. Patients reported pain, limb deformities and claudication, before burosumab initiation. 78% of them were previously treated with conventional therapy. The severity of the disease was moderate to severe (15 patients with score >5). At the baseline, 3 patients presented NC (16.7%) and 12 HPT (63%). After 16 +/- 8.4 months under burosumab, we observed a significant: increase in stature (p = 0.02), in serum phosphate from 1.90 +/- 0.43 to 2.67 +/- 0.52 mg/dL (p = 0.02); in TmP/GFR from 1.30 +/- 0.46 to 2.27 +/- 0.64 mg/dL (p = 0.0001), in 1,25 (OH)(2) D from 50.5 +/- 23.3 to 71.1 +/- 19.1 pg/mL (p = 0.03), and a decrease in iPTH from 86.8 +/- 37.4 pg/mL to 66.5 +/- 31.1 (p = 0.002). Nineteen variants were found (10 novel). HPT tended to develop in patients with truncated PHEX variants (p = 0.06). Conclusions: This study confirms the efficacy and safety of burosumab on XLH adult patients observed in clinical trials. Additionally, we observed a decrease in iPTH levels in patients with moderate to severe HPT at the baseline.
Palavras-chave
adulthood, burosumab, FGF23, hyperparathyroidism, PHEX variants, X-linked hypophosphatemia
Referências
  1. Aiello F., 2022, Journal of Pediatric Endocrinology Metabolism, V36, P91
  2. Andrukhova O, 2014, EMBO J, V33, P229, DOI 10.1002/embj.201284188
  3. Aono Y, 2009, J BONE MINER RES, V24, P1879, DOI [10.1359/JBMR.090509, 10.1359/jbmr.090509]
  4. Arcidiacono T, 2023, J CLIN MED, V12, DOI 10.3390/jcm12082906
  5. Arcidiacono T, 2022, ENDOCRINE, V77, P566, DOI 10.1007/s12020-022-03092-x
  6. Beck-Nielsen SS, 2019, ORPHANET J RARE DIS, V14, DOI 10.1186/s13023-019-1014-8
  7. Brandi ML, 2022, THER ADV CHRONIC DIS, V13, DOI 10.1177/20406223221117471
  8. Brandi ML, 2022, CALCIFIED TISSUE INT, V111, P409, DOI 10.1007/s00223-022-01006-7
  9. Briot K, 2021, RMD OPEN, V7, DOI 10.1136/rmdopen-2021-001714
  10. Carpenter TO, 2014, J CLIN INVEST, V124, P1587, DOI 10.1172/JCI72829
  11. Carpenter TO, 2011, J BONE MINER RES, V26, P1381, DOI 10.1002/jbmr.340
  12. Cheong HI, 2019, JBMR PLUS, V3, DOI 10.1002/jbm4.10074
  13. DeLacey S, 2019, BONE, V127, P386, DOI 10.1016/j.bone.2019.06.025
  14. Filisetti D, 1999, EUR J HUM GENET, V7, P615, DOI 10.1038/sj.ejhg.5200341
  15. FRANCIS F, 1995, NAT GENET, V11, P130, DOI 10.1038/ng1095-130
  16. Fratzl-Zelman N, 2022, J BONE MINER RES, V37, P1665, DOI 10.1002/jbmr.4641
  17. Goltzman D, 2018, HISTOCHEM CELL BIOL, V149, P305, DOI 10.1007/s00418-018-1648-y
  18. Holm IA, 2001, J CLIN ENDOCR METAB, V86, P3889, DOI 10.1210/jc.86.8.3889
  19. Imel EA, 2015, J CLIN ENDOCR METAB, V100, P2565, DOI 10.1210/jc.2015-1551
  20. Imel EA, 2010, J CLIN ENDOCR METAB, V95, P1846, DOI 10.1210/jc.2009-1671
  21. Insogna KL, 2019, J BONE MINER RES, V34, P2183, DOI 10.1002/jbmr.3843
  22. Insogna KL, 2018, J BONE MINER RES, V33, P1383, DOI 10.1002/jbmr.3475
  23. Ito N, 2022, ENDOCR J, V69, P373, DOI 10.1507/endocrj.EJ21-0386
  24. Kamenicky P, 2023, RMD OPEN, V9, DOI 10.1136/rmdopen-2022-002676
  25. Keskin M, 2015, J PEDIATR ENDOCR MET, V28, P1333, DOI 10.1515/jpem-2014-0447
  26. Kubota T, 2023, ADV THER, V40, P1530, DOI 10.1007/s12325-022-02412-x
  27. Kubota T, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2019-036367
  28. Lecoq AL, 2020, METABOLISM, V103, DOI 10.1016/j.metabol.2019.154049
  29. Lee SK, 2022, J CLIN PHARMACOL, V62, P87, DOI 10.1002/jcph.1950
  30. Levey AS, 2009, ANN INTERN MED, V150, P604, DOI 10.7326/0003-4819-150-9-200905050-00006
  31. Lin Y, 2020, J ENDOCRINOL INVEST, V43, P1577, DOI 10.1007/s40618-020-01240-6
  32. Linglart A, 2014, ENDOCR CONNECT, V3, pR13, DOI 10.1530/EC-13-0103
  33. Marcellino Alessia, 2023, Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, V42, P104, DOI 10.1089/mab.2022.0026
  34. Marik B, 2022, EUR J MED GENET, V65, DOI 10.1016/j.ejmg.2022.104540
  35. Morey M, 2011, BMC MED GENET, V12, DOI 10.1186/1471-2350-12-116
  36. Page MJ, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n160
  37. Pena SDJ, 2020, AM J MED GENET C, V184, P928, DOI 10.1002/ajmg.c.31853
  38. Portale AA, 2019, CALCIFIED TISSUE INT, V105, P271, DOI 10.1007/s00223-019-00568-3
  39. Quinlan C, 2012, PEDIATR NEPHROL, V27, P581, DOI 10.1007/s00467-011-2046-z
  40. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  41. Ruppe Mary D, 2016, Bone Rep, V5, P158, DOI 10.1016/j.bonr.2016.05.004
  42. Sabbagh Y, 2005, P NATL ACAD SCI USA, V102, P9637, DOI 10.1073/pnas.0502249102
  43. Sarafrazi S, 2022, HUM MUTAT, V43, P143, DOI 10.1002/humu.24296
  44. Schindeler A, 2020, FRONT ENDOCRINOL, V11, DOI 10.3389/fendo.2020.00338
  45. Shimada T, 2004, J BONE MINER RES, V19, P429, DOI 10.1359/JBMR.0301264
  46. Skrinar A, 2019, J ENDOCR SOC, V3, P1321, DOI 10.1210/js.2018-00365
  47. Song HR, 2007, J KOREAN MED SCI, V22, P981, DOI 10.3346/jkms.2007.22.6.981
  48. Souza MA, 2010, CLINICS, V65, P1023, DOI 10.1590/S1807-59322010001000017
  49. Takashi Y, 2022, FRONT ENDOCRINOL, V13, DOI 10.3389/fendo.2022.1004624
  50. Thiele S, 2020, EUR J ENDOCRINOL, V183, P497, DOI 10.1530/EJE-20-0275
  51. Vaisbich MH, 2006, PEDIATR NEPHROL, V21, P230, DOI 10.1007/s00467-005-2077-4
  52. Weber TJ, 2022, J CLIN ENDOCR METAB, DOI 10.1210/clinem/dgac518
  53. Woeckel VJ, 2010, J CELL PHYSIOL, V225, P593, DOI 10.1002/jcp.22244
  54. Wu J, 2020, PHARMACOEPIDEM DR S, V29, P1213, DOI 10.1002/pds.4962
  55. Zagari MC, 2023, GENES-BASEL, V14, DOI 10.3390/genes14010080
  56. Zhang C, 2019, BONE, V121, P212, DOI 10.1016/j.bone.2019.01.021
  57. Zhang XP, 2016, J CLIN PHARMACOL, V56, P429, DOI 10.1002/jcph.611
  58. Zhang XP, 2016, J CLIN PHARMACOL, V56, P176, DOI 10.1002/jcph.570
  59. Zheng BX, 2020, J BONE MINER RES, V35, P1718, DOI 10.1002/jbmr.4035