Using the theory of added-variable plot for linear mixed models to decompose genetic effects in family data

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
WALTER DE GRUYTER GMBH
Autores
GIOLO, Suely R.
ANDRADE, Mariza de
SOLER, Julia P.
Citação
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, v.13, n.3, p.359-378, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Effective analytical tools are highly desirable for data analysis and for making the biological link between genotypic and phenotypic measures. In family data it is important to reconcile the methods that explain the phenotypic variability through fixed genetic effects and ones that estimate variance components using classical heritability methods. Thus, in this paper, we propose a method based on added-variable plot for polygenic linear mixed models applied to genome wide association studies in family-based designs. Our goal is to be able to discriminate genetic predictor variables in effects due to random polygenic and residual components. We also propose an index to detect influential families for each predictor variable identified with genetic effect. We assess the performance of our proposed method using our own family simulated data and the Genetic Analysis Workshop 17 family simulated data.
Palavras-chave
association analysis, influential families, polygenic models, variance components
Referências
  1. Almasy L, 1998, AM J HUM GENET, V62, P1198, DOI 10.1086/301844
  2. Almasy Laura, 2011, BMC Proc, V5 Suppl 9, pS2, DOI 10.1186/1753-6561-5-S9-S2
  3. Amin N, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001274
  4. AMOS CI, 1994, AM J HUM GENET, V54, P535
  5. Atkinson A.C., 1985, PLOTS TRANSFORMATION
  6. Aulchenko YS, 2007, GENETICS, V177, P577, DOI 10.1534/genetics.107.075614
  7. Chien LC, 2011, J APPL STAT, V38, P113, DOI 10.1080/02664760903271940
  8. Comuzzie AG, 1997, NAT GENET, V15, P273, DOI 10.1038/ng0397-273
  9. Cook R.D., 1994, INTRO REGRESSION GRA
  10. Cook R.D., 1982, RESIDUALS INFLUENCE
  11. de Andrade M., 2003, GENET EPIDEMIOL, V39, P1
  12. de Andrade M, 1999, GENET EPIDEMIOL, V17, P64, DOI 10.1002/(SICI)1098-2272(1999)17:1<64::AID-GEPI5>3.0.CO;2-M
  13. Duggal P, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-516
  14. HARVILLE D, 1976, ANN STAT, V4, P384, DOI 10.1214/aos/1176343414
  15. Hazelton ML, 2003, GENET EPIDEMIOL, V24, P297, DOI 10.1002/gepi.10242
  16. Hilden-Minton J. A., 1995, THESIS U CALIFORNIA
  17. Hodges J., 1994, 940009 U MINESSOTA M
  18. Hodges JS, 1998, J ROY STAT SOC B, V60, P497, DOI 10.1111/1467-9868.00137
  19. HOPPER JL, 1982, ANN HUM GENET, V46, P373, DOI 10.1111/j.1469-1809.1982.tb01588.x
  20. Huggins R. M., 1993, AUST J STAT, V35, P43
  21. Ionita-Laza I., 2013, AM J HUM GENET, V92, P1
  22. Ionita-Laza I, 2007, AM J HUM GENET, V81, P607, DOI 10.1086/519748
  23. JOHNSON BW, 1987, TECHNOMETRICS, V29, P427, DOI 10.2307/1269453
  24. Kraft P, 2003, GENET EPIDEMIOL, V25, pS50, DOI 10.1002/gepi.10284
  25. Leal SM, 2005, HUM HERED, V60, P119, DOI 10.1159/000088914
  26. Mosteller F., 1977, DATA ANAL REGRESSION
  27. Nobre JS, 2007, BIOMETRICAL J, V49, P863, DOI 10.1002/bimj.200610341
  28. Nobre JS, 2011, J APPL STAT, V38, P1063, DOI 10.1080/02664761003759016
  29. Olswold C, 2003, BMC GENET, V4, DOI 10.1186/1471-2156-4-S1-S57
  30. Rao CR, 1973, LINEAR STAT INFERENC
  31. Royall R, 2003, J ROY STAT SOC B, V65, P391, DOI 10.1111/1467-9868.00392
  32. SCHORK NJ, 1993, AM J HUM GENET, V53, P1306
  33. Searle S.R., 1992, VARIANCE COMPONENTS
  34. Verbeke G, 1997, LINEAR MIXED MODELS
  35. WANG PC, 1985, TECHNOMETRICS, V27, P273, DOI 10.2307/1269708
  36. Yang JA, 2011, AM J HUM GENET, V88, P76, DOI 10.1016/j.ajhg.2010.11.011