Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study

Carregando...
Imagem de Miniatura
Citações na Scopus
94
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE BV
Autores
MCGRATH, Lauren M.
YU, Dongmei
MARSHALL, Christian
DAVIS, Lea K.
THIRUVAHINDRAPURAM, Bhooma
LI, Bingbin
GERBER, Gloria
WOLF, Aaron
SCHROEDER, Frederick A.
Citação
JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, v.53, n.8, p.910-919, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. Method: The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. Results: Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p = .09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 case patient deletions: 0 control deletions, p = .08 in the current study, p = .025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support for the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in individuals with autism or schizophrenia (2-4%). Conclusion: Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes.
Palavras-chave
Tourette syndrome, obsessive-compulsive disorder, copy number variation, genetics, 16p13.11
Referências
  1. [Anonymous], 2008, NATURE, V455, P237
  2. Bierut LJ, 2010, P NATL ACAD SCI USA, V107, P5082, DOI 10.1073/pnas.0911109107
  3. Bolton D, 2007, PSYCHOL MED, V37, P39, DOI 10.1017/S0033291706008816
  4. Clarke RA, 2009, CASE REPORT MED, V2009
  5. Cook EH, 2008, NATURE, V455, P919, DOI 10.1038/nature07458
  6. Cooper GM, 2011, NAT GENET, V43, P838, DOI 10.1038/ng.909
  7. Davis LK, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003864
  8. de Kovel CGF, 2010, BRAIN, V133, P23, DOI 10.1093/brain/awp262
  9. Delorme R, 2010, BMC MED GENET, V11, DOI 10.1186/1471-2350-11-100
  10. Fernandez TV, 2012, BIOL PSYCHIAT, V71, P392, DOI 10.1016/j.biopsych.2011.09.034
  11. Firth HV, 2009, AM J HUM GENET, V84, P524, DOI 10.1016/j.ajhg.2009.03.010
  12. Grados MA, 2009, CURR PSYCHIAT REP, V11, P162
  13. Heinzen EL, 2010, AM J HUM GENET, V86, P707, DOI 10.1016/j.ajhg.2010.03.018
  14. Kaminsky EB, 2011, GENET MED, V13, P777, DOI 10.1097/GIM.0b013e31822c79f9
  15. Kerbeshian J, 2008, PSYCHIAT GENET, V18, P258, DOI 10.1097/YPG.0b013e328306c989
  16. Kirov G, 2012, MOL PSYCHIATR, V17, P142, DOI 10.1038/mp.2011.154
  17. Malhotra D, 2011, NEURON, V72, P951, DOI 10.1016/j.neuron.2011.11.007
  18. Malhotra D, 2012, CELL, V148, P1223, DOI 10.1016/j.cell.2012.02.039
  19. Mathews CA, 2011, J AM ACAD CHILD PSY, V50, P46, DOI 10.1016/j.jaac.2010.10.004
  20. Miller DT, 2010, AM J HUM GENET, V86, P749, DOI 10.1016/j.ajhg.2010.04.006
  21. Nag A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059061
  22. O'Rourke JA, 2009, J PSYCHOSOM RES, V67, P533, DOI 10.1016/j.jpsychores.2009.06.006
  23. Pauls David L, 2010, Dialogues Clin Neurosci, V12, P149
  24. Pescosolido MF, 2013, J AM ACAD CHILD PSY, V52, P414, DOI 10.1016/j.jaac.2013.01.003
  25. Pinto D, 2011, NAT BIOTECHNOL, V29, P512, DOI 10.1038/nbt.1852
  26. Pinto D, 2010, NATURE, V466, P368, DOI 10.1038/nature09146
  27. Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795
  28. Robertson MM, 2006, J PSYCHOSOM RES, V61, P365, DOI 10.1016/j.jpsychores.2006.06.011
  29. Sanders SJ, 2011, NEURON, V70, P863, DOI 10.1016/j.neuron.2011.05.002
  30. Scharf JM, 2013, MOL PSYCHIATR, V18, P721, DOI 10.1038/mp.2012.69
  31. Scharf JM, 2012, J AM ACAD CHILD PSY, V51, P192, DOI 10.1016/j.jaac.2011.11.004
  32. Stewart SE, 2013, MOL PSYCHIATR, V18, P788, DOI 10.1038/mp.2012.85
  33. Sundaram SK, 2010, NEUROLOGY, V74, P1583, DOI 10.1212/WNL.0b013e3181e0f147
  34. Thapar A, 2013, J AM ACAD CHILD PSY, V52, P772, DOI 10.1016/j.jaac.2013.05.013
  35. Ullmann R, 2007, HUM MUTAT, V28, P674, DOI 10.1002/humu.20546
  36. van Grootheest DS, 2005, TWIN RES HUM GENET, V8, P450, DOI 10.1375/183242705774310060
  37. Walitza S, 2012, J NEURAL TRANSM, V119, P507, DOI 10.1007/s00702-011-0699-1
  38. Wang K, 2007, GENOME RES, V17, P1665, DOI 10.1101/gr.6861907
  39. Williams NM, 2010, LANCET, V376, P1401, DOI 10.1016/S0140-6736(10)61109-9
  40. Xu B, 2008, NAT GENET, V40, P880, DOI 10.1038/ng.162