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Paracoccidioidomycosis (PCM) is an important endemic, systemic disease in Latin

America caused by Paracoccidioides spp. This mycosis has been associated with

high morbidity and sequels, and its clinical manifestations depend on the virulence of

the infecting strain, the degree and type of immune response, infected tissues, and

intrinsic characteristics of the host. The T helper(Th)1 and Th17/Th22 cells are related to

resistance and control of infection, and a Th2/Th9 response is associated with disease

susceptibility. In this study, we focused on interleukin(IL)-12p35 (IL12A), IL-18 (IL18),

and IFN-γ receptor 1 (IFNGR1) genetic polymorphisms because their respective roles

have been described in human PCM. Real-time PCR was employed to analyze IL12A

-504 G/T (rs2243115), IL18 -607 C/A (rs1946518), and IFNGR1 -611 A/G (rs1327474)

single nucleotide polymorphisms (SNP). One hundred forty-nine patients with the acute

form (AF), multifocal chronic (MC), or unifocal chronic (UC) forms of PCM and 110 non-

PCM individuals as a control group were included. In the unconditional logistic regression

analysis adjusted by ethnicity and sex, we observed a high risk of the IL18 -607A-allele for

both AF [p = 0.015; OR = 3.10 (95% CI: 1.24–7.77)] and MC groups [p = 0.023; OR =

2.61 (95% CI: 1.14–5.96)] when compared with UC. The IL18 -607 A-allele associated

risk for the AF and MC groups as well as the protective role of the C-allele in UC are

possibly linked to higher levels of IL-18 at different periods of the course of the disease.

Therefore, a novel role of IL18 -607 C/A SNP is shown in the present study, highlighting

its importance in the outcome of PCM.
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INTRODUCTION

Paracoccidioidomycosis (PCM) is one of the main endemic,
systemic mycoses in Latin America, and it is caused by the
thermally dimorphic fungi of the Paracoccidioides brasiliensis (P.
brasiliensis) complex (Paracoccidioides spp.) and Paracoccidioides
lutzii. PCM is associated with high morbidity and sequels;
however, because it is not a compulsorily notified disease in
Brazil, the actual data are based on reports of epidemiological
surveys, case series, hospitalization, and mortality data (1). It
is endemic in the southeast, central west, and south regions of
Brazil and estimated at 0.71–2.70/100,000 inhabitants/year (2).
Epidemic areas have been reported in the western Brazilian areas
with a mean incidence of 9.4/100,000 and peaks of 37–39/100,000
inhabitants (3).

The inhalation of conidia of Paracoccidioides spp. can result

in infection without symptoms, acute or chronic disease, or in
sequelae. The clinical manifestations depend on the virulence of

the infecting strain, the degree and type of immune response,
infected tissues, and intrinsic characteristics of the host (4).

Some components of the innate immunity, such as
neutrophils, dendritic cells, toll-like receptors, dectin-1,
myeloid differentiation primary response 88 (MyD88), and
NOD-like receptor P3 (NLRP3) inflammasome, have been
evaluated in both experimental and human PCM (5–10).
However, it is the adaptive response to P. brasiliensis that has
been extensively studied with a well-established murine model
and characterization of clinical forms of PCM by T helper (Th)
responses and antibodies (11).

The acute form of PCM shows a mixed Th2/Th9 response:

increased levels of IL-4, IL-5, IL-9, IL-10, TGF-β, and IL-27; low
production of IFN-γ and TNF-α; and high levels of specific IgG4
and IgE antibodies. On the other hand, the chronic form presents
a Th17/Th22 profile with high production of IL-17 and IL-22 and
also secreting Th1-type cytokines, such as IFN-γ, TNF-α, and
IL-2 as well as variable levels of IL-10 and IL-4 and increased
levels of specific IgG1 antibodies (12, 13). Therefore, the Th2/Th9
responses can be associated with susceptibility to PCM, and the
presence of Th1 and Th17/Th22 cells can contribute to more
mild clinical manifestations with the axis IFN-γ/IL-12 directly
associated with protection and control of the infection (11–16).

The high-affinity binding of IL-12 to its receptor results in the
differentiation of naïve CD4T cells into Th1 lymphocytes, which
are the major producers of IFN-γ, alongside NK cells. In the
presence of IL-12, IL-18 also stimulates the production of IFN-
γ, inducing a Th1-mediated immune response; in the absence of
IL-12, IL-18 can stimulate a Th2 response (17, 18).

Higher levels of IL-18 and sTNF-RII are described in the
acute form of PCM when compared with the chronic form and
controls, and IL-12 is also higher in patients than in controls (19).
The same group reports higher levels of IL-18 during treatment
and lower levels after antifungal treatment (20). As the disease
is more severe in the acute form with high IL-18 levels, the
authors suggest that this cytokine could be a useful marker of
PCM severity.

Previous studies on murine PCM have shown that IL-12 and
IL-18 secretions are associated with innate immunity factors.

MyD88-deficient mice show a more severe disease after 8
weeks of infection with low levels of IL-12, and a protective
role in murine pulmonary PCM was shown in the NLRP3
inflammasome, associated with IL-1β and IL-18 secretion and
expansion of Th1 and Th17 cells and suppressive control of T-reg
cells (7, 21).

The mechanisms controlling these effects are unclear, but
reports on genetic background in both human and experimental
disease have been shedding light on this matter. For instance,
an autosomal dominant gene has been associated with resistance
in murine PCM (22), and in human disease, reports show
the influence of the human leukocyte antigen (HLA) in both
susceptibility and outcomes. The HLA class I, HLA-B13, was
found in a higher proportion in PCM patients compared to
controls as well as a higher frequency of HLA-A9 in patients with
the progressive pulmonary form (23). In parallel, increased risk
of PCM development was associated with the presence of HLA-
B40, which was found more in patients than in controls (24, 25).
In 2011, the class II-HLA-DRB1∗11 allele was reported in a higher
frequency in patients with the more benign clinical presentation
of this disease, the unifocal chronic (UC) form (26). Moreover,
PCM patients were shown to have a higher proportion of the
non-expressed C4B allele, C4B∗Q0, of deficient C4 isotypes,
suggesting to the authors a possible influence of different C4
isotype and allotype frequencies in the course of infection (27).

In addition, an enzyme phenotype (GLO-1 phenotype of
glyoxalase I) was associated with PCM infection represented by
a positive intradermic reaction, and a possible relationship with
HLA antigens deserves further discussion because there is a close
linkage between the GLO phenotype and HLA (28).

Our group and others have been studying single nucleotide
polymorphisms (SNPs) and different mutations on cytokines and
receptor genes. For instance, the inherited mutation Leu77Phe
on the IL-12 receptor β1 subunit (IL-12Rβ1) gene (IL12RB1)
associated with its loss of function and complete deficiency,
resulting in a severe, acute form of PCM (29). Moreover, in
Brazilian patients with PCM, reports of polymorphisms on IL-
4 and IL-12Rβ1 genes have shown the relevance of IL4 -590
C/T and IL12RB1 641 A/G SNPs in association with infection
or clinical forms, contributing to a better understanding of the
immunopathogenesis of this disease (30, 31).

Polymorphisms on the IFN-γ gene have also been described
in infectious diseases, such as toxoplasmosis, tegumentar
leishmaniasis, and PCM, and no association between alleles or
genotypes and these diseases was observed (31–35). Furthermore,
it is also necessary to consider that the expression of the IFN-γ
receptor could be interfering in the axis IL-12/IFN-γ because its
deficiency was already described in the more disseminated forms
of histoplasmosis, coccidioidomycosis, mycobacteriosis, and
disseminated BCG infection (36–39). This deficient expression
could be associated with a mutation in the IFN-γ receptor
1 gene, such as the IFNGR1 -611 A/G SNP, which has been
associated with strong promoter activity and with decreased risk
of pulmonary tuberculosis (40, 41).

IL-12p70, the bioactive form of IL-12, is a heterodimer of two
subunits: p35 (encoded by the IL12A gene) and p40 (encoded by
the IL12B gene). No association was found between IL12B+1188
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A/C SNP and PCM (31). SNPs in the IL12A gene, on the other
hand, have not yet been explored in this mycosis.

Studies show an association of IL18 -607 C/A SNP (rs1946518)
with protection or risk in several infections (42–45). However,
as with the IL12A -504 G/T (rs2243115) and the IFNGR1 -611
A/G (rs1327474) SNPs, there are still no studies associating this
genetic polymorphism with systemic fungal infections.

Considering the interaction between IL-18, IL-12, and IFN-
γ and the genetic aspects possibly involved in susceptibility to
PCM and the lack of studies on this disease, the present study
aimed to analyze the IL18 -607 C/A (rs1946518), IL12A -504 G/T
(rs2243115), and IFNGR1 -611 A/G (rs1327474) SNPs, for the
first time to our knowledge, in a cohort of Brazilian patients with
PCM, also presenting a brief review of studies on these SNPs in
infectious diseases.

MATERIALS AND METHODS

Subjects
A total of 149 patients with PCM from the General Infirmary
and Systemic Mycosis Outpatient Clinic from the Infectious
Diseases Division (Hospital das Clínicas, Faculdade de Medicina,
University of São Paulo—HCFMUSP, São Paulo, SP, Brazil)
were included in the study (Table 2). Thirty-nine patients had
the acute form of PCM (AF) and 110 had the chronic form
(CF); 93 had the multifocal chronic form (MC) and 17 had
the UC form. This classification was performed according to
Franco et al. (46). UC includes only patients with mild, restricted
disease to the skin, mucosae, or lymph nodes without lung or
cerebral involvement. The control group (CO) included 110 non-
PCM subjects. The study protocol was approved by the ethics
committee of HCFMUSP (CAPPesq 10273; Plataforma Brasil
123334/2013), and all subjects gave written informed consent in
accordance with the Declaration of Helsinki.

The inclusion criteria were (a) patients with PCM:
identification of Paracoccidioides spp. by mycological
and/or histopathological examination and/or presence
of anti-P. brasiliensis serum antibodies (titers ≥32 on
counterimmunoelectrophoresis test) at the moment of
enrollment or proven in the past; and (b) CO: individuals
considered healthy without a previous history of the disease,
not sensitized in lymphoproliferation assays against the 43-kDa
glycoprotein of P. brasiliensis, and absence of serum anti-P.
brasiliensis antibodies (by immunodiffusion test). Subjects with
comorbidities, such as neoplasia and other acute or chronic
systemic infectious diseases, were excluded.

DNA Extraction
Genomic DNAwas obtained from peripheral blood leukocytes by
the salt precipitation method (DTAB/CTAB; dodecyl trimethyl
ammonium bromide/cetyltrimethyl ammonium bromide, both
from Sigma-Aldrich, Merck, St. Louis, MO, USA) as previously
described (47). The concentration and purity of the extracted
DNA were evaluated by a UV spectrophotometer (Nanodrop
LITE, Thermo Fisher Scientific, Carlsbad, CA, USA).

Detection of SNPs
The SNPs in the IL-12p35 (IL12A -504 G/T, rs2243115), IL-18
(IL18 -607 C/A, rs1946518), and IFN-γ receptor 1 (IFNGR1 -
611 A/G, rs1327474) genes were investigated by real-time PCR
using specific oligonucleotides and probes labeled with VIC (wild
allele) or FAM (mutated allele) fluorochromes and TaqManTM

Genotyping Master Mix (all from Molecular Probes, Thermo
Fisher Scientific, Carlsbad CA, USA). The assays and results
were performed and analyzed with the StepOne Plus Real Time
PCR System and software (Applied Biosystems, Thermo Fisher
Scientific, Foster City, CA, USA).

Statistical Analysis
The deviations from the Hardy–Weinberg equilibrium and the
distribution of genotypic and allelic frequencies of the SNPs on
IL12A, IL18, and IFNGR1 genes in the studied population were
evaluated by Pearson’s χ2 test. To estimate the risk of patients
with AF, MC, and UC PCM associated with genotypes and alleles,
odds ratios (ORs) and 95% confidence intervals (95% CIs) were
calculated as approximations of relative risk using unconditional
logistic regression analysis. For ordered variables, tests for linear
trend were done by categorizing the exposure variables and
entering the scores as continuous. To verify the strength of
association between the final events, we performed univariate and
multivariate logistic analyses adjusted by ethnicity and sex with
the STATA 14.0 software (StataCorp, College Station, TX, USA),
and p-values ≤0.05 were considered statistically significant.

RESULTS

Considering the plausible role of genetic background in human
PCM, we summarize all previously reported SNPs or mutations
on immune-related genes and their main results on Brazilian
patients in Table 1. Eight SNPs or mutations on DC-SIGN, HLA,
IL-4, IL-10, IL-12Rβ1, and Vitamin D receptor genes were found
to have an association with risk, outcome, or clinical forms of
PCM. As the SNPs of this study had not yet been evaluated
on PCM patients, we also compiled previous reports on the
IL18 (-607 C/A, rs1946518 and -137 G/C, rs187238), IL12A
(-504 G/T, rs2243115), and IFNGR1 (-611 A/G, rs13277474)
SNPs and their association with diverse infectious diseases
(Supplementary Tables 1–3, respectively).

This study evaluated the IL18 -607 C/A, IL12A -504 G/T,
and IFNGR1 -611 A/G SNPs in 149 patients with the AF
and CF of PCM and 110 control individuals (CO). The CF
group is subclassified as MC and UC forms. There were no
statistically significant differences between cases and controls
in the distribution of ethnic groups or sex (data not shown).
Regarding the different groups of patients (AF, MC, and UC),
no differences in ethnic distribution were found (p = 0.476).
However, in the univariate analysis of sex distribution, there was
a significant difference between these groups with amalemajority
on a ratio of 17.6 in the MC group (Table 2).

Genotypic frequencies for the three evaluated SNPs were in
Hardy–Weinberg equilibrium (data not shown). The distribution
of genotypic and allelic frequencies of IL12A -504 G/T, IL18 -607
C/A, and IFNGR1 -611 A/G SNPs among patients and controls
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TABLE 1 | Polymorphisms on immune-related genes in Brazilian patients with PCM.

Structure (gene) Mutation (rs) Main results References

CTLA-4 (CTLA4) −318 C/T and +49 A/Ga • No differences between patients and controls (48)

DC-SIGN (DCSIGN) rs4804803 • Genotype DCSIGN-GG on patients with oral PCM (p = 0.032) (49)

FCγ-RIIa (FCGR2A) rs1801274 • No differences between patients and controls (49)

HLA (HLA) HLA-DRB1 and HLA-DQB1 allelesa • HLA-DRB1*11 allele associated with UC form of PCM (p = 0.039) (26)

IFN-γ (IFNG) +874 T/Aa • No differences between patients and controls (35)

+874 T/A (rs2430561) • No differences between patients and controls (31)

• No differences between clinical forms of PCM

IL-4 (IL4) −590 T/Ca • Patients with C-allele produce more IL-4 than those with T-allele (p

< 0.05)

(35)

• No differences between patients and controls (30)

Intron-3 microsatellite RP1/RP2a • Genotypes RP2/RP2 on patients and RP1/RP1 on controls (with low

IL-4 expression): p = 0.0042

(30)

IL-10 (IL10) −1082 G/Aa • Genotypes IL10-GG on patients and IL10-AA on controls (p

= 0.0218)

(34)

IL-12p40 (IL12B) +1188 A/C (rs3212227) • No differences between patients and controls (31)

• No differences between clinical forms of PCM

IL-12Rβ1 (IL12RB1) 230 T/C Leu77Phea • Inherited IL-12Rβ1 deficiency leading to acute form of PCM (29)

641 A/G (rs11575834) • No differences between patients and controls (31)

• Male patients: Genotype IL12RB1-AA on MC form and IL12RB1-AG

on UC form (p = 0.048)

JAK1 rs11208534 • No differences between patients and controls (49)

TNF-α (TNFA) −308 G/Aa • No differences between patients and controls (34)

rs1800629 • No differences between patients and controls (49)

Vitamin D Receptor

(VDR)

rs7975232 • Genotype VDR-CC (p < 0.001) and C-allele (p = 0.027) on patients (49)

ars not informed or not applicable.

TABLE 2 | Distribution (n), sex (M = Male; F = Female) and ethnicity (W = White;

B = Black) ratio, and p-values among the groups of patients with acute, multifocal

chronic and unifocal chronic forms of PCM.

Clinical forms of PCM n Sex ratio (M/F) p Ethnicity ratio (W/B) p

Acute 39 1.8 (25/14) 0.000 1.2 (12/10) 0.476

Multifocal chronic 93 17.6 (88/5) 2.1 (57/27)

Unifocal chronic 17 2.4 (12/5) 2.5 (10/4)

and among AF and CF groups is shown in Table 3. We found
no statistical significances in the univariate analysis of genotypic
frequencies in the codominant, dominant, and recessive models
nor in the distribution and frequencies of alleles.

In Table 4, we show the distribution of genotypic and allelic
frequencies of IL12A -504 G/T, IL18 -607 C/A, and IFNGR1 -611
A/G SNPs among the groups of patients with the different clinical
forms of PCM, analyzed by unconditional logistic regression
with adjustments for ethnicity and sex. The comparison between
AF, MC, and UC genotypic distribution did not result in a
statistical difference.

Regarding the allelic distribution and frequencies of IL18 -607
C/A SNP, unconditional logistic regression with adjustments for
ethnicity and sex shows significant differences between AF and
UC [p = 0.015; OR = 3.1 (95% CI: 1.24–7.77)] with a higher

frequency of the A-allele in AF (53.8%) than in UC (26.5%)
(Tables 4, 5). The same is observed in the comparison between
MC and UC [p = 0.023; OR = 2.61 (95% CI: 1.14–5.96)].
Concerning alleles of IL12A -504 G/T and IFNGR1 -611 A/G
SNPs, no statistical differences were found. Furthermore, Table 5
shows the statistical data on sex and ethnicity as covariates of
IL18 -607 C/A SNP in the distribution of genotypes and alleles.
There was a significant difference of sex distribution between
AF and MC with a higher proportion of women in AF (p =

0.000); this is the opposite of the comparison between MC and
UC, in which the proportion of female patients is significantly
lower in the MC group (p < 0.015). This same effect occurred
with the codominant, dominant, recessive, and allelic analyses,
confirming and detailing the data of Table 2. There were no
differences regarding sex distribution between AF and UC, and
ethnicity had no statistically significant effect as a covariate in
this analysis.

DISCUSSION

Genetic studies are relevant to understanding the mechanisms
involved in the pathogenesis of diseases (50, 51). Some genetic
polymorphisms are shown to directly interfere in cytokine
expression, therefore directing the immune response of the host
and possibly influencing the outcome of the disease.
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TABLE 3 | Genotypic and allelic distributions and frequencies of IL12A -504 G/T, IL18 -607 C/A, and IFNGR1 -611 A/G SNPs, values of Odds Ratio (OR) and 95%

Confidence Interval (95% CI) among the groups of Controls (n = 110) and Patients (n = 149), and among the groups of patients with Acute (n = 39) and Chronic

(Multifocal + Unifocal) forms of PCM (n = 110).

SNP Genotypes Alleles Groups—n (%) Clinical forms of PCM—n (%)

Controls Patients OR (95% CI) Acute Chronic OR (95% CI)

IL12A -564 G/T GG 2 (1.8) 2 (1.3) 1.0 1 (2.6) 1 (0.8) 1.0

GT 28 (25.5) 40 (26.9) 1.43 (0.19–10.76) 13 (33.4) 27 (24.6) 0.48 (0.03–8.32)

TT 80 (72.7) 107 (71.8) 1.34 (0.18–9.7) 25 (64.0) 82 (74.6) 0.3 (0.02–5.05)

G 32 (14.5) 44 (14.8) 1.0 15 (19.2) 29 (13.2) 1.0

T 188 (85.5) 254 (85.2) 0.98 (0.6–1.61) 63 (80.8) 191 (86.8) 0.63 (0.32–1.26)

IL18 -607 C/A CC 29 (26.4) 44 (29.5) 1.0 10 (25.7) 34 (30.9) 1.0

CA 60 (54.5) 68 (45.6) 0.75 (0.42–1.34) 16 (41.0) 52 (47.3) 1.05 (0.43–2.58)

AA 21 (19.1) 37 (24.8) 1.16 (0.57–2.37) 13 (33.3) 24 (21.8) 1.84 (0.7–4.89)

C 118 (53.6) 156 (52.3) 1.0 36 (46.2) 120 (54.5) 1.0

A 102 (46.4) 142 (47.7) 1.05 (0.74–1.49) 42 (53.8) 100 (45.5) 1.4 (0.83–2.35)

IFNGR1 -611

A/G

AA 14 (12.8) 21 (14.1) 1.0 4 (10.3) 17 (15.5) 1.0

AG 47 (43.1) 66 (44.3) 0.93 (0.43–2.03) 19 (48.7) 47 (42.7) 0.58 (0.17–1.96)

GG 48 (44.0) 62 (41.6) 0.86 (0.4–1.87) 16 (41.0) 46 (41.8) 0.67 (0.2–2.3)

A 75 (34.4) 108 (36.2) 1.0 27 (34.6) 81 (36.8) 1.0

G 143 (65.6) 190 (63.8) 0.92 (0.64–1.33) 51 (65.4) 139 (63.2) 1.1 (0.64–1.89)

In the present study, we investigated the possible association
between the IL12A -504 G/T, IL18 -607 C/A, and IFNGR1 -
611 A/G SNPs in Brazilian patients with PCM and disease
susceptibility. The distribution of genotypes and alleles of the
IL12A -504 G/T SNP was similar in all evaluated comparisons
on our study. Although this SNP was related to immune
responses against rubella vaccination and HBV and protection
in tuberculosis, we did not observe a clear association with
PCM (52–54).

As for IFNGR1 -611 A/G SNP, genotypic and allelic
distributions were similar in all evaluated comparisons,
confirmed by unconditional logistic regression analysis (adjusted
for sex and race). The absence of association with risk or
protection reported here is similar to the data reported in
tuberculosis and liver fibrosis progression due to recurrent
hepatitis C (55–58). An association between tuberculosis and
the IFNGR1 -611 A/G and -56 T/C haplotype was observed
by Bullak-Kardum et al. (41). In fact, the promoter activity is
supposed to be stronger in -611 A/G than -56 T/C, and the
variant A is estimated to decrease the binding of GATA-1 and
TFIID factors to this site (40, 58). Because previous associations
with risk or protection have been described in other SNPs,
further studies should include the IFNGR1 -611 A/G SNP.

In our analysis of the IL18 -607 C/A SNP, we found
no differences on allelic and genotypic distributions between
patients and controls or between AF and CF groups of patients.
On the other hand, the adjustment for sex and ethnicity in the
unconditional regression logistic analysis confirmed the presence
of the A-allele as a risk factor for the AF and MC groups when
compared to the UC group.

The association of the A-allele/AA-genotype and higher risk
is shown in various infectious diseases, such as chronic hepatitis

B in Thailand and in India, gingivitis in the Czech Republic,
pulmonary tuberculosis in China, Chagas disease in Colombia
(mainly driven by rs360719), and infection by the hepatitis C
virus in Egypt (37, 43, 52–62). Similarly to our results, the
mutant allele/genotype of IL18 -607 C/A is also associated with
more severe outcomes in other infectious diseases: higher virus
shedding of the severe acute respiratory syndrome-associated
(SARS) coronavirus in Taiwan, lipodystrophy syndrome on HIV-
positive Brazilian individuals, immune restoration disease on
HIV–tuberculosis coinfected Indian patients, bacterial infections
after liver transplantation in China, and hepatitis C–related
hepatocellular carcinoma in Egypt (63–67).

The effect of the A-allele/AA-genotype on PCM and other
infectious diseases could be explained by changes in IL-18 levels
introduced by this mutant allele in the -607 position. In effect, the
IL-18 human gene is composed of six exons and five introns with
three very well-known SNPs in the promoter region: -656 G/T
(rs1946519), -607 C/A (rs1946518), and -137 G/C (rs187238).
Two of these positions, -607 and -137, are thought to be nuclear
factor binding sites for cAMP responsive element binding protein
and H4TF-1 nuclear factor, respectively, and mutation on both
sites can affect the IL-18 levels (50).

The -607 C-allele/CC-genotype carriage has been associated
with higher levels of IL-18 in the serum and/or of mRNA
expression (50, 66, 68–70). In our study, we found higher C-
allele carriage on patients with the UC form of PCM (73.5%),
whereas the AF and MC groups (with 46.2 and 51.1% of C-allele
carriage, respectively) had already been reported to have higher
serum IL-18 levels than those from the former group (19, 20).

We hypothesize that the higher C-allele carriage on patients
with the UC form of PCM may induce higher IL-18
levels at the early stages of infection, determining increased
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TABLE 4 | Genotypic and allelic distributions and frequencies of IL12A -504 G/T, IL18 -607 C/A, and IFNGR1 -611 A/G SNPs, values of Odds Ratio (OR) and 95% Confidence Interval (95% CI) adjusted for sex and

race by unconditional logistic regression analysis among the groups of patients with Acute (AF, n = 39), Multifocal Chronic (MC, n = 93) and Unifocal Chronic (UC, n = 17) forms of PCM.

SNP Model Genotypes Alleles Clinical Forms of PCM—n (%) AF vs. MCa AF vs. UCb MC vs. UCc

AF MC UC OR (95% CI) OR (95% CI) OR (95% CI)

IL12A -504 G/T Codominant GG 1 (2.6) 1 (1.1) 0 (0.0) 1

GT 13 (33.4) 21 (22.6) 6 (35.3) 0.62 (0.04–10.78) — —

TT 25 (64.0) 71 (76.3) 11 (64.7) 0.35 (0.02–5.84) — —

Dominant GG 1 (2.6) 1 (1.1) 0 (0.0) 1

GT + TT 38 (97.4) 92 (98.9) 17 (100.0) 0.41 (0.03–6.78) — —

Recessive GG + GT 14 (36.0) 22 (23.7) 6 (35.3) 1 1 1

TT 25 (64.0) 71 (76.3) 11 (64.7) 0.55 (0.25–1.24) 0.97 (0.3–3.2) 1.76 (0.58–1.76)

G 15 (19.2) 23 (12.4) 6 (17.6) 1 1 1

T 63 (80.8) 163 (87.6) 28 (82.4) 0.59 (0.29–1.21) 0.90 (0.32–2.56) 1.52 (0.47–4.06)

IL18 -607 C/A Codominant CC 10 (25.7) 26 (28.0) 8 (47.1) 1

CA 16 (41.0) 43 (46.2) 9 (52.9) 0.97 (0.38–2.45) — —

AA 13 (33.3) 24 (25.8) 0 (0.0) 1.41 (0.52–3.80) — —

Dominant CC 10 (25.7) 26 (28.0) 8 (47.1) 1 1 1

CA + AA 29 (74.3) 67 (72.0) 9 (52.9) 1.13 (0.48–2.63) 2.58 (0.78–8.5) 2.29 (0.80–6.58)

Recessive CC + CA 27 (66.7) 69 (74.2) 17 (100.0) 1

AA 13 (33.3) 24 (25.8) 0 (0.0) 1.38 (0.63–3.11) — —

C 36 (46.2) 95 (51.1) 25 (73.5) 1 1 1

A 42 (53.8) 91 (48.9) 9 (26.5) 1.19 (0.69–2.07) 3.10 (1.24–7.77) 2.61 (1.14–5.96)

IFNGR1 -611 A/G Codominant AA 16 (41.0) 39 (41.9) 7 (41.2) 1 1 1

AG 19 (48.7) 37 (39.8) 10 (58.8) 2.82 (0.84–9.52) 0.84 (0.2–3.52) 0.64 (0.19–2.18)

GG 4 (10.3) 17 (18.3) 0 (0.0) 0.39 (0.03-4.22) — —

Dominant AA 16 (41.0) 39 (41.9) 7 (41.2) 1 1 1

AG + GG 23 (59.0) 54 (85.1) 10 (58.8) 1.95 (0.61–6.22) 0.97 (0.24–3.92) 0.98 (0.29–3.25)

Recessive AA + AG 35 (89.7) 76 (81.7) 17 (100.0) 1

GG 4 (10.3) 17 (18.3) 0 (0.0) 0.23 (0.02–2.20) — —

A 51 (65.4) 115 (61.8) 24 (70.6) 1 1 1

G 27 (34.6) 71 (38.2) 10 (29.4) 0.86 (0.49–1.49) 1.27 (0.53–3.04) 1.48 (0.67–3.38)

aReference for AF vs. MC = MC.
bReference for AF vs. UC = UC.
cReference for MC vs. UC = UC.
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TABLE 5 | Association studies between the groups of patients with Acute (AF), Multifocal Chronic (MC), and Unifocal Chronic (UC) forms of PCM including sex, ethnicity,

and the IL18 -607 C/A SNP as covariates and results of p-values, Odds Ratio (OR), and 95% Confidence Interval (95% CI).

Covariates of IL18 -607 C/A SNP Comparisons

AF vs. MCc AF vs. UCd MC vs. UCe

p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI

Sexa 0.000 12.63 3.64–43.81 0.484 1.74 0.37–8.18 0.020 0.16 0.35–0.76

Ethnicityb 0.433 1.54 0.52–4.55 0.350 2.12 0.44–10.31 0.517 1.56 0.40–6.00

CC vs. CA vs. AA 0.546 1.25 0.60–2.62 0.070 3.06 0.91–10.27 0.164 1.89 0.77–4.65

Sexa 0.000 12.58 3.64–43.50 0.393 1.89 0.44–8.16 0.015 0.151 0.03–0.70

Ethnicityb 0.420 1.56 0.53–4.64 0.399 1.85 0.59–9.16 0.600 1.42 0.38–5.36

CC vs. CA + AA 0.755 1.13 0.48–2.63 0.769 2.58 0.78–8.5 0.724 2.29 0.80–6.58

Sexa 0.000 12.39 3.58–42.98 0.609 1.52 0.31–7.50 0.018 0.15 0.03–0.72

Ethnicityb 0.402 1.59 0.53–4.75 0.699 1.63 0.47–8.00 0.364 1.88 0.48–7.36

CC + CA vs. AA 0.569 1.38 0.63–3.11 Omitted Omitted

Sexa 0.000 12.6 3.64–43.80 0.484 1.74 0.37–8.31 0.020 0.16 0.03–0.76

Ethnicityb 0.430 1.54 0.52–0.30 0.350 2.12 0.44–10.31 0.517 1.56 0.40–6.00

C vs. A 0.528 1.19 0.69–2.07 0.015 3.10 1.24–7.77 0.023 2.61 1.14–5.96

aReference for sex = male.
bReference for ethnicity = white.
cReference for AF vs. MC = MC.
dReference for AF vs. UC = UC.
eReference for MC vs. UC = UC.

levels of IFN-γ and a more efficient cellular response that
controls fungal dissemination and the consequential tissular
inflammation. In parallel, previous work in our lab shows that
phytohemagglutinin-stimulated cells from IL18 -607 C-allele-
unifocal patients apparently produce more IFN-γ than C-allele
carriers from the acute or the chronicmultifocal groups, although
without statistically significant difference (unpublished data).
However, because both infection and disease in humans are
recognized in a later and undefined period after fungal entrance,
those initial events can only be evaluated in experimental
PCM and have been elegantly shown in deficient mice models.
The intravenous infection of IL-18-deficient mice (IL-18−/−)
with P. brasiliensis yeast cells resulted in a higher fungal
burden in the lungs compared with wild-type (WT) animals
and absence of granuloma formation (71). Furthermore, P.
brasiliensis intratracheally infected mice deficient for NLRP3
inflammasome components (Nlrp3−/−, Casp1/11−/−, Asc−/−)
as well as deficient for the ATP receptor (P2x7r−/−) also had a
higher fungal burden in their lungs and liver; predominance of
CD4+IL-4+, CD4+TGF-β+, and T-reg cells; a lower number of
pulmonary PMN cells; and less IL-18 and IL-1β compared with
their WT controls (7).

In this context, it is possible that patients with the less
severe UC form of PCM present a more balanced IL-
18/IL-12/IFN-γ axis, resulting in more localized and milder
clinical manifestations compared with the other groups, in
which the higher IL-18 levels are accompanied by other
immunomodulating cytokines. The more severe form of PCM,
the acute form, has been characterized by IL-4 with IL-18
inducing a Th2 immune response (high levels of IL-4, IL-5, and
IL-13), by IL-4 and TGF-β inducing a Th9 pattern (high levels

of IL-9), and both Th2 and Th9 inhibiting the Th1 response.
Patients with chronic PCM were previously shown to have a
mixed immune response of Th1 (IL-12 and IL-18 leading to IFN-
γ production), Th17 (induced by IL-18, IL-1 and IL-23), and
Th22 (induced by IL-18, IL-1, IL-23, and IL-21), which result in
heterogeneous clinical symptoms (12, 13, 20).

In our study, the UC group included only patients with
mild and restricted disease to the skin, mucosae, or lymph
nodes. The exclusion of patients with lung involvement was
based on the possible misclassification of MC patients who
are more prone to develop pulmonary lesions. Although these
criteria resulted in fewer patients in the UC group, it also
revealed specific immunogenetic characteristics, such as the
association of a more favorable outcome with the IL18 -607 C-
allele in the present study and the IL12RB1 641 AG-genotype
and the HLA-DRB1∗11 allele carriage, previously reported by our
group (26, 31).

Additionally, the association of the IL18 -607 A-allele with the
more severe forms of PCM described herein collaborates with
previous reports on different genes emphasizing the influence
of genetic background on the outcome of this mycosis. The
GG-genotype of IL10 -1082 G/A SNP, the RP2/RP2-genotype
of the intron-3 microsatellite polymorphism of the IL4 gene,
the AA-genotype of IL12RB1 641 A/G SNP, the GG-genotype
of the DCSIGN rs4804803 A/G SNP, and the CC-genotype
of the VDR rs7975232 A/C SNP have all been previously
associated with susceptibility or the more severe outcome in
PCM (26, 29–31, 34, 35, 49). In parallel, HLA class I antigens
and the GLO-1 phenotype of the glyoxalase enzyme have been
associated with the progression of disease (pulmonary form) or
infection (23–25, 27, 28).
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We reinforce that our present data and all the genetic
associations previously described may be considered in the
same context of association of autosomal gene dominance with
resistance in murine PCM, which is a model that reproduces
several characteristics of the human disease (22).

The comparison between patients and controls in our
study shows a greater number of male than female subjects,
particularly in the MC group. As previously described, there
has been a male predominance among cases of chronic
PCM (72–74). This mycosis manifests more frequently in
male farmers who are constantly working in direct contact
with the soil where Paracoccidioides spp. probably occurs
(1). In addition, infected women are less likely to manifest
the chronic form because of the putative role of estrogen
(17-β-estradiol) as a protective factor that impairs conidia
transformation into yeast form during murine infection (75–
77). Although this effect has been less commonly registered
in human PCM, epidemiological data reported in Brazil show
that the disease is rare in adult females (4.3%) and usually
occurring in the menopausal period (91.3%) (78). Contrarily,
it has been demonstrated that 17-β-estradiol can exert an
anti-inflammatory role by decreasing TNF-α and IL-6 while
increasing IL-4 levels, which further results in a Th2 response
(79). In oral PCM lesions, a positive correlation between the
amount of estradiol receptors and the fungal burden was
observed only in female patients (80). These recent findings
may explain the more even distribution of the acute form
of PCM among sexes, and the higher frequency of females
in UC and lower in MC could be evidence of protection
for women in developing the more severe chronic form of
the disease.

Possible limitations in our study are the inclusion of only one
health center, mixed ethnic groups in the Brazilian population,
and lack of detection of IL-18 levels and functional analyses.
Although reflecting the distribution of PCM in endemic areas,
our cohort with a low number of patients with the UC form is
also a limitation for further inquiry.

In summary, our study did not show an association between
PCM and the evaluated IL12A and IFNGR1 SNPs or between
the acute and chronic forms or between multifocal and unifocal
chronic forms. For the IL18 -607 C/A SNP, no association
was shown with infection or among acute and chronic forms.
However, we show an association between the IL18 -607 A-
allele and the more severe clinical forms of PCM, acute and
multifocal chronic forms, when compared to the UC form, the
less severe form of this disease, associated with the IL18 -607 C-
allele. To the best of our knowledge, this is the first study that
evaluates the association between IL12A, IFNGR1, and IL18 SNPs
and PCM.

The present data suggest a novel role of IL18 -607 C/A SNP
as a contributor to a more favorable outcome of this disease,
potentially leading to a more balanced and more efficient cellular
response for the control of fungal dissemination at the early
stages of infection in UC. Furthermore, our work highlights

the need for new studies with other SNPs on the IL18 gene
and on other components of the immune response for a better
understanding of the pathophysiology and the clinical expression
of PCM.
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