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Abstract: Viruses are the most diverse and abundant microorganisms on earth, highly adaptive to a
wide range of hosts. Viral diversity within invertebrate hosts has gained notoriety in recent years
in public health as several such viruses have been of medical importance. Aedes aegypti serves as a
vector for several viruses that have caused epidemics within the last year throughout Brazil; including
Dengue, Zika and Chikungunya. This study aimed to identify new viral agents within Aedes aegypti
mosquito in a city of the Amazonian region, where it is highly endemic. Metagenomic investigation
was performed on 60 mosquito pools and viral RNA sequences present in their microbiota were
characterized using genomic and phylogenetic tools. In total, we identified five putative novel virus
species related to the Sobemovirus genus, Iflavirus genus and Permutatetraviridae family. These findings
indicate a diverse taxonomy of viruses present in the mosquito microbiota of the Amazon, the region
with the greatest invertebrate diversity in the world.
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1. Introduction

Next-generation sequencing (NGS) is a revolutionary tool in molecular biology research. Courtesy
of NGS, great numbers of insect microbiota have been explored, allowing the discovery of novel
microorganisms, especially viruses [1–3]. Although the collective insect microbiota harbors many
human pathogenic viruses, most viruses are non-pathogenic and have no direct public health impact.
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Despite this, some viruses are hypothesized to influence on mosquito susceptibility to certain
arboviruses [4–8]. Furthermore, some phylogenetic studies indicate the evolution of pathogenic
viruses from insect-specific virus to that capable of dual host tropism [1,9,10]. Therefore, metagenomic
mosquito surveillance will enable new insights into the diversity and evolution of arboviruses.

The Amazon forest is considered one of the largest mosquito-related viral reservoirs in the world.
Climatic and geographic conditions (frequent rainfall, year-round high temperature and dense forests)
favors dissemination of several species of hematophagous diptera (mosquito, sandflies and ticks) and
sylvatic animals [11]. Many mosquito-borne virus of medical importance are endemic throughout
the Amazon, such as Dengue virus (DENV), Yellow Fever Virus, Oropouche virus and Mayaro virus;
constituting significant morbidity for its population [12].

Ae. aegypti is an exotic mosquito species introduced to the Americas via slave ships coming from
Africa [13]. Globally, the vector is closely associated with human habitations, demonstrating a great
adaptive capacity to varied environments. The favorable climatic conditions of the Amazon have
contributed to its domestication here [14]. Today, Ae. aegypti is responsible for transmitting a number
of arboviruses such as dengue, Zika and chikungunya viruses, causing several epidemics in Brazil in
the last few years [15].

Macapa in North Brazil is a typical Amazon city whereby it rains from December to May and has
a dry summer from June to November. A recent study demonstrated high infestation rates of female
Ae. Aegypti in Macapa [16]. It is well known that Dengue virus, Zika virus and Chikungunya virus
are prevalent in this mosquito population. There is significant potential for the prevalence of other
not-yet-characterized viruses within Ae. Aegypti of the Amazon and as such, may pose an emergent
threat to public health. Previous studies from our group have described unusual viral sequences from
Flaviridae and Reoviridae families in Ae. aegypti mosquitoes in the Amazon [17,18]. Using an NGS
metagenomic approach, this study aimed to identify novel viruses in Ae. aegypti mosquito captured
throughout an area of high-infestation from Macapa city, North Brazil. We found five potential novel
viral species, suggestive of a rich taxonomy of arboviruses yet to be discovered in this Amazon region.

2. Materials and Methods

2.1. Mosquitoes Collection

Mosquitoes (Diptera: Culicidae) were collected from city of Macapá, Amapá state, North Brazil (see
Figure S1), twice a month from January to March 2017. Electric manual aspirators and entomological
nets were used to collect the mosquitoes. The mosquitoes were then transported to the laboratory,
euthanized with ethyl acetate and morphologically identified using the dichotomous keys of Consoli
and Lourenço-de-Oliveira [19] legs and wings removed. Between one and five females were grouped
in pools according to their taxonomic category, place and date of collection. In total, 60 pools of
mosquitoes were stored in a −80 ◦C freezer.

2.2. Sample Processing and Next Generation Sequencing (NGS)

The following metagenomics deep sequencing protocol was used. Initially, each mosquito pool
was homogenized in 2 mL impact-resistant tube containing lysing matrix C (MP Biomedicals, USA)
added to 900 µL of Hanks’ buffered salt solution (HBSS). The homogenized sample was centrifuged at
12,000× g for 10 min and approximately 300 µL of the supernatant was then filtrated through a 0.45 µm
filter (Merck Millipore, Billerica, MA, USA). Next, 100 µL of cold PEG-it Virus Precipitation Solution
(System Biosciences, CA, USA) was added to the obtained filtrate, mixed and incubated at 4 ◦C for 24 h.
After, the mixture was centrifuged at 10,000× g for 30 min at 4 ◦C and supernatant discarded. The pellet
rich in viral particles was treated with a mix of nuclease enzymes to digest unprotected nucleic acids.
Viral nucleic acids were obtained using ZR & ZR-96 Viral DNA/RNA Kit (Zymo Research, CA, USA)
according to the manufacturer’s protocol. The cDNA synthesis was conducted with AMV Reverse
transcription (Promega, WI, USA). A second strand of cDNA synthesis was conducted using DNA
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Polymerase I Large Fragment (Promega, WI, USA). Then, DNA library was performed using Nextera
XT Sample Preparation Kit (Illumina, CA, USA). The library was deep-sequenced using the HiSeq 2500
Sequencer (Illumina, CA, USA) with 126 bp ends. Bioinformatic analysis was performed according
to the protocol previously described by Deng et al. [20]. The singlets and contigs were analyzed via
BLAST (BLASTn and BLASTx) to look for similarity to viral sequence in GenBank’s Virus.

2.3. Phylogeny and Viral Annotation

Firstly, viral sequences identified in this study were used to query against NCBI protein database
using the BLASTp tool to determine the closest sequences, its taxonomic classification and similarity.
Secondly, based on BLAST result, the best hit sequences were download and aligned using Mafft
software online [21] and phylogenetic trees were constructed using PhyML software [22] by Maximum
Likelihood approach. Branch support values were assessed using the approximate likelihood ratio
test (aLRT) on a Shimodaira-Hasegawa-like test. Evolutionary models and gamma distribution
were selected according to the Bayesian information criterion (BIC) implemented in the jModeltest
software [23]. Thirdly, the ORFs were annotated using InterProScan [24] and CD-search web using the
CCD 3030 database and e-value < 0.05 [25].

3. Results

A total of 60 pools of Ae. aegypti female was collected (each pool containing between 1 and
5 specimens of mosquitoes, see the locations of sampling in the Figure S1 and characteristics of these
pools in the Table S1), of which 24 were from Central and 36 were from Marabaixo and subsequently
submitted to NGS protocol. Raw data were processed and after assembly the viral sequences were
identified based on similarity of BLASTX comparison against to all RefSeq database in GenBank (details
of viral richness in pools of pools contained viruses describe in this study were summarized in the
Figures S4–S9, Supplementary Materials). We found nine virus-like sequences in two samples (AP59
and AP60) with <90% amino acid identity to different unclassified viruses, related to Sobemo-like virus,
Iflavi-like virus and Permutotetra-like virus. These sequences represent five putative novel viruses,
named Aedes Sobemo-like virus, Aedes Iflavi-like virus 1, Aedes Iflavi-like virus 2, Aedes permutotetra-like virus
1 and Aedes permutotetra-like virus 2 (Table 1). All sequences generated in this study were deposited
in the GenBank (GenbBank acession: MT808014-MT808054) and they are also available in a fasta
formatted file (Supplementary Materials; File S1).

Table 1. Amino acid similarity of sequences identified in metagenomics analysis from Ae. aegypti pools.

Virus Name Closely Related Viruses 1 Gene Length (nt) Cover 1 Amino Acid Identity 1

Aedes Sobemo-like virus
strain AP60-1 *

Wenzhou Sobemo-like virus 4
Peptidase 1719 42% 36%

RdRp 1308 88% 72%
Aedes Sobemo-like virus

strain AP60-2 *
Wenzhou Sobemo-like virus 4

Peptidase 2768 99% 54%
RdRp 1308 100% 83%

Aedes Iflavi-like virus 1 Yongsan picorna-like virus 1
Capsid 2561 60% 49%

Helicase 1464 100% 46%
RdRp 2016 97% 48%

Aedes Iflavi-like virus 2 Yongsan picorna-like virus 1 Capsid 1965 49% 47%
RdRp 1285 50% 52%

Aedes permutotetra-like
virus 1

Culex Daeseongdong-like
virus RdRp 3321 92% 53%

Aedes permutotetra-like
virus 2 strain AP59 * Sarawak virus Capsid 1219 91% 48%

Aedes permutotetra-like
virus 2 strain AP60 * Sarawak virus Capsid 882 94% 49%

1 Based on Blastp. * Same virus (>90% amino acid identity between them).

3.1. Sobemo-Related Virus

Two Sobemo-like virus sequences (3000 and 2768 nt) were identified in two pools, tentatively named
Aedes Sobemo-like virus (ASLV). Sobemo-like virus belongs to an unclassified group distantly related to
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the International Committee on Taxonomy of viruses (ICTV) Sobemovirus genus and Luteoviridae family.
Sobemo-like viruses are widely found in insects and have a particular genomic organization; many
of these novel viruses have (bi) segmented genomes, different to Sobemovirus genus and Luteoviridae
family viruses which are monopartite [1]. We characterized two complete segment 1s of ASLV, which
possesses two open read-frame (ORFs) corresponding to a putative peptidase and RNA-dependent
RNA-polymarase (RdRp), respectively (Figure 1a). The ASLV RdRp gene encodes a 450-aa protein with
amino acid identity varying between 72% and 83% with hypothetical protein 2 of Wenzhou Sobemo-like
virus 4, the closest aligned sequence in the blastx, while the capsid shares 36–54% amino acid identity
with same virus (Table 1). The ASLV has a typical overlapping reading frame, −1 frameshift and a
protein layout similar to that of other known sobemoviruses (Figure 1a).
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One contig corresponding to the helicase gene and two contigs corresponding to the capsid and 
RdRp genes of two putative novel viruses; designated Aedes Iflavi-like virus 1 (AILV 1) and Aedes Iflavi-
like virus 2 (AILV 2), were found in two mosquitoes pools (Figure 2a). All three fragments have low 
amino acid identity (<56%) with Yongsan picorna-like virus 1, the best hit with blastx (Table 1). This 
low identity is reflected in the topology of RdRp-based phylogeny, with AILV 1 and AILV 2 grouped 

Figure 1. Luteo-sobemo-related viruses genomes map and phylogeny. (a) Open read-frame organization
of closest related virus to Aedes sobemo-like virus and Guadeloupe mosquito virus. (b) Nucleotide maximum
likelihood tree based on segment 1 for Sobemo-like viruses and Luteovirus and Sobemovirus genus.
Aedes sobemo-like virus and Guadeloupe mosquito virus sequenced in this study are highlighted in orange
and green, respectively. The diagram in the base of the tree is the likelihood map of the nucleotide
alignment of genomes of Luteo-sobemo-related viruses. The likelihood quartet mapping is a method
that allows to visualize the tree-likeness of all quartets in a single graph and provide a direct measure of
the phylogenetic signal in an alignment. The triangle shows the location of all quartets calculated with
the alignment used to infer the ML tree. Values in the center of the triangle represent the percentage
of unresolved quartet trees (star-like trees), values in the vertices represent the percentage of fully
resolved trees and values in the intermediate areas (between vertices) are the percentage of conflicting
trees. The analysis was performed using GTR+ gamma correction model as is implemented in the tree
puzzle software v 5.3 (http://www.tree-puzzle.de).

http://www.tree-puzzle.de
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In addition, eighteen viral genomes with complete coding regions similar to Guadeloupe Mosquito
virus (GMV) were obtained from several analyzed pools. The viral genomes contain two segments,
encoding a putative peptidase and RdRp protein on segment 1 (2400–3000 nt) (Figure 1a) and a putative
capsid and one hypothetical protein encoded by segment 2 (1000–1800 nt) (data not shown). Similarly
to ASLV, GMV, Wenzhou sobemo-like virus 4 and Hubei mosquito virus 2 are all currently unclassified
viruses with a distant relationship to the Luteoviridae family and Sobemovirus genus [26]. Phylogenetic
analysis based on segment 1 indicates that GMV Brazilian sequences are highly similar to GMV, recently
detected in Guadeloupe, and Renna virus isolated from Mexico City, sharing about 100% nucleotide
sequence identity, clustered into a unique clade (Figure 1b).

3.2. Iflavi-Related Virus

One contig corresponding to the helicase gene and two contigs corresponding to the capsid and
RdRp genes of two putative novel viruses; designated Aedes Iflavi-like virus 1 (AILV 1) and Aedes
Iflavi-like virus 2 (AILV 2), were found in two mosquitoes pools (Figure 2a). All three fragments have
low amino acid identity (<56%) with Yongsan picorna-like virus 1, the best hit with blastx (Table 1).
This low identity is reflected in the topology of RdRp-based phylogeny, with AILV 1 and AILV 2
grouped in a separated clade from other Iflavi-like viruses (Figure 2b). The similar topologies were
observed in the helicase and capsid-based ML phylogeny (Supplementary Materials). The phylogeny
of best hits on blastx and Iflavirus members show diversity of Iflavi-like viruses, with all Iflavi-like
and Iflavirus members previously isolated from arthropods, mostly insects [27]. AILV strains grouped
into a cluster which shares a common ancestor with other viruses originally described in mosquitoes,
dismembered from other insect-viruses (Figure 2b), however, only Yongsan picorna-like virus 1, AILV 1
and AILV 2 have been found in Aedes mosquitoes (unpublished). Since we used NGS to amplify viral
sequences it is possible that contigs of ALV1 were derived from distinct viral genomes, likewise contigs
of ALV2 also may have been amplified from distinct genomes. Nevertheless the phylogenetic analysis
showed ALV1 and ALV2 are not the same virus and they likely represent new species.

3.3. Permutotetra-Like Virus

We found three partial genomic segments from two putative novel Permutotetra-like viruses
(Figure 3). A RdRp sequence (3321 nt) presented 53% of amino acid identity with Culex
Daeseongdong-like virus, the most similar virus. This putative novel virus was named Aedes
permutotetra-like virus 1 (APLV1) (Figure 3a). Another two capsid sequences (882 and 1219 nt) belonging
to this group shared ~48% amino acid identity with the most similar virus, Sarawak virus. This putative
novel virus was named Aedes permutotetra-like virus 2 (APLV2) (Figure 3b). The cluster formed by
APLV-1, Culex Daeseongdong-like, Daeseongdong virus 2 and Smothfield permutotetra-like virus have
been found in mosquitoes (Figure 3c) [3,28]; similarly, the clade formed by APLV-2, Culex permutotetra
virus, Shinobi tetravirus and Sarawak virus have also been detected in different mosquito species
(Figure 3d) [29–31].
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Figure 2. Iflavi-related contigs position in Yongsan picorna-like virus genome. (a) Contigs position of
Aedes Iflavi-like virus and structure-based alignment with relative closest virus, Yongsan picorna-like
virus. (b) Maximum likelihood tree (ML) for RdRp protein of Aedes Iflavi-like virus (orange) with
Iflavirus genus (indicated in a blue area) and Iflavi-like sequences related to Aedes Iflavi-like virus by
Blastp search. Sequences from the current study are colored in red. The diagram in the base of the tree
is the likelihood map of the nucleotide alignment of genomes of Iflavi-related viruses. The likelihood
quartet mapping is a method that allows to visualize the tree-likeness of all quartets in a single graph
and provide a direct measure of the phylogenetic signal in an alignment. The triangle shows the
location of all quartets calculated with the alignment used to infer the ML tree. Values in the center of
the triangle represent the percentage of unresolved quartet trees (star-like trees), values in the vertices
represent the percentage of fully resolved trees and values in the intermediate areas (between vertices)
are the percentage of conflicting trees. The analysis was performed using JTT model as is implemented
in the tree puzzle software v 5.3 (http://www.tree-puzzle.de).
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Figure 3. Permutotetra-related contigs position in most related viruses genomes. (a) Schematic
representation of Culex Daeseongdong-like virus, Aedes permutetra-like virus 1, (b) Sarawak virus
and Aedes permutetra-like virus 2. (c) Maximum likelihood phylogenetic tree for RdRp protein and
(d) maximum likelihood phylogenetic tree for capsid protein. Viruses originally found in mosquitoes
are marked by orange. Sequences from this study are indicated in red. * Indicate the location in the
RdRp tree of the reference viruses used to construct the capsid tree. The diagram in the base of the
tree is the likelihood map. The likelihood quartet mapping is a method that allows to visualize the
tree-likeness of all quartets in a single graph and provide a direct measure of the phylogenetic signal in
an alignment. The triangle shows the location of all quartets calculated with the alignment used to
infer the ML tree. Values in the center of the triangle represent the percentage of unresolved quartet
trees (star-like trees), values in the vertices represent the percentage of fully resolved trees and values
in the intermediate areas (between vertices) are the percentage of conflicting trees. The analysis was
performed using JTT+gamma correction model as is implemented in the tree puzzle software v 5.3
(http://www.tree-puzzle.de).
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4. Discussion

In this study, we analyzed 60 pools of Ae. aegypti, and, as expected, we found several highly
divergent sequences, which possibly represent novel viral species. These viruses belong to the
Luteo-sobemo-related virus, Iflavirus and Alphapermutotetravirus genus.

One novel Luteo-sobemo related virus was found in two Ae. aegypti samples, named Aedes
sobemo-like virus (ASLV). The sobemo-like viruses are (+) ssRNA unclassified viruses distantly related
to the Sobemovirus genus and Luteoviridae family (Figure 1b), which infects plants and is known to be
vectored by arthropods. Although viruses belonging to Sobemovirus genus and Luteoviridae family are
known plant viruses and are of monopartite genome, Sobemo-like virus members have bi-segmented
genomes and have been isolated primarily from insects [1,26]. It has been speculated that this group of
viruses should be proposed as a new family [32].

Iflavirus members are a new recognized family called Iflaviridae (order Picornavirales), under the
Iflavirus genus. All Iflavirus members are insect-infecting viruses and they have been identified in
a wide range of hosts belonging to the class Insecta, although plant-infecting Iflavirus-like virus has
been reported from tomato (Solanum lycopersicum) [33]. Currently, there are fifteen species in the genus
Iflavirus recognized in the last report of ICTV [34]. However, sequence identity at the amino acid level
of the capsid proteins above 90% is used for species demarcation criteria for the Iflavirus genus and
several tentative novel viruses have been identified showing sequence similarity to members of the
genus Iflavirus and yet are classified as iflavi-like viruses. Through NGS analysis, we assembled five
contigs that showed similarity to Iflavi-like viruses, here named Aedes Iflavi-like virus 1 (AILV1) and
Aedes Iflavi-like virus 2 (AILV2). For this reason, there is a possibility of these contigs belong to distinct
viral genomes. Our analysis shows that ALV1 and ALV2 share a common ancestor that diverge from
each other and likely represent two new viral species. BLASTp searches showed that both AILV1 and
AILV2 shared low sequence identity (less than 90%) with other members of Iflaviridae at the amino acid
level (Table 1), indicating that both are novel species of Iflaviridae family [34]. Additionally, sequence
analysis showed that the AILV1 and AILV2 shared 50% capsid amino acid sequence identity (data not
shown), suggesting that they are members of the different species. The phylogenetic analysis showed
that AILV1 and AILV2 form a well-supported clade, suggesting the representation of a novel clade
within the Iflaviridae family. According to ICTV, “The Iflaviridae family is expanding rapidly and will
likely undergo revision in the near future” and possibly new species and genus will be included in the
official taxonomy.

Additionally, we also detected three partial genomes of two putative novel viruses (APLV 1 and
APLV2) closely related to unclassified permutotetra-like viruses. Permutotetraviridae is a recent classified
family with a single genus (Alphapermutotetravirus) and two prototype species (Euprosterna elaeasa virus
and Thosea asigna virus), restricted mainly to insects in the order Lepidoptera (butterflies and moths).
In recent years, a wide range of highly divergent viruses distantly related to Permutotetraviridae family
has been identified [1,3,30,35]. The lack of common genomic organizations in permutotetra-like virus
members and the formation of two large and well-supported clades (Figure 3) support the need to
create new groups for the current unclassified viruses of this family. So, the permutotetra-like viruses
(APLV1 and APLV2) found in this study may represent new species within different genus/family.
Both viruses are grouped with viruses isolated only from mosquitoes, indicating a likely common
origin within their respective clades (Figure 3c,d).

All novel viruses reported here share a common ancestor with other viruses originally described in
mosquitoes, dismembered from other insect-viruses, suggesting a close evolution with their mosquito
hosts. Recent phylogenetic studies in several RNA insect-virus families have indicated that they are
ancient agents with highly distinct lineages, leading to the credence of probable co-evolution and
expansion with their insect hosts [10,36,37]. The hypothesis that insect-viruses have been closely
associated with their insect hosts for a long period of time is supported by studies that demonstrate
vertical/transovarial transmission (TOT), whereas some become integrated into the genomes of their
own arthropod hosts [38–40]. Another possibility regarding insect-virus evolution is of host association,
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whereby dual host viruses evolved from insect-specific progenitors, with many arthropod-borne
viruses possibly emerging to vertebrates and plants in this way, including complete adaptation to
vertebrate or plant hosts and thereby losing the need for an invertebrate host [2,41]. Importantly,
none of these novel viruses are closely related to known vector-borne pathogens of humans or other
mammals. The alignments used to construct maximum likelihood trees (ML) have a poor phylogenetic
signal, as determined by the high proportion of star-like trees in the likelihood mapping analysis.
Although the low quality of alignments has little effect on the topology of trees constructed with
other methods, it may have a significant outcome to estimates mutation rates or to the measurement
of divergent-time. Consequently, in the future with the identification of new viral sequences the
interpretation of data may also be affected.

The diversity of arboviruses remains to be explored, especially in the Amazon, known for being a
rich bioma with many viral species. For example, the Amazon region is identified as the starting point
for transmission of the yellow fever virus in a recent outbreak in Brazil that killed almost 700 people
between December 2016 and March 2018 and the Amazon rainforest functions as a ‘reservoir’ region
for several arboviruses [42]. Other studies have been identified novel virus presents in the mosquito
microbiota in this region, in the host Aedes aegypti and anophelines [17,18,43], reinforcing the idea that
our current knowledge about the diversity of viruses is still very limited. Furthermore, insect-specific
virus (ISV) compose the majority of mosquito virome the virus-virus interactions may affect the
transmission of some viral pathogens [44,45]. From description and characterization of these viral
agents, we can gain knowledge useful to some biotechnological strategies in combating epidemic
viruses, such as Dengue, Zika and Chikungunya.

Recent massive metagenomics studies have expanded our knowledge about diversity of a great
number of invertebrate viruses, which include many unclassified groups, inclusive of luteo-sobemo-like
virus, Ifla-like virus, permutotetra-like virus, among others [1–3,46]. The ICTV officialization of these
taxonomic proposals requires time, alongside large quantities of sequence analysis and therefore,
the identification of novel viral sequence within this study greatly contributes to the correct taxonomic
classification of these “virus-like” sequences. Ultimately, our results highlight the importance of
identifying and characterizing novel viruses to expand our understanding of the taxonomic diversity
of viral groups (families, genera and species), which is currently poor. The host range influence and
vector biology for these viruses, alongside the ecological and evolutionary history of Aedes aegypti
microbiota, the principle arboviral vectors of Brazil, need to be further studied.
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