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Abstract: Vaccination is one of the greatest public health achievements in the past century,
protecting and improving the quality of life of the population worldwide. However, a safe and
effective vaccine for therapeutic or prophylactic treatment of fungal infections is not yet available.
The lack of a vaccine for fungi is a problem of increasing importance as the incidence of diverse
species, including Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides, has increased
in recent decades and new drug-resistant pathogenic fungi are emerging. In fact, our antifungal
armamentarium too frequently fails to effectively control or cure mycoses, leading to high rates of
mortality and morbidity. With this in mind, many groups are working towards identifying effective
and safe vaccines for fungal pathogens, with a particular focus of generating vaccines that will work
in individuals with compromised immunity who bear the major burden of infections from these
microbes. In this review, we detail advances in the development of vaccines for pathogenic fungi,
and highlight new methodologies using immunoproteomic techniques and bioinformatic tools that
have led to new vaccine formulations, like peptide-based vaccines.

Keywords: fungal; vaccine; peptides; paracoccidioides; sporothrix; aspergillus; candida; coccidioides;
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1. Introduction

Although preceded by variolation in China as early as the 15th century, the development of
standardized vaccines began in the 18th century [1]. From the beginning, vaccine development has
been focused on using whole attenuated or inactivated microorganisms or fractions of microbes [1].
Remarkably, these methodologies are still routinely used in modern vaccinology. More recently,
with advances in technology and a more detailed understanding of immunology, newer innovative
methods are being applied for vaccine development. Our current vaccine armamentarium includes
vaccines against diverse lethal viral and bacterial diseases, but there is no vaccine against a fungal
disease. The absence of mass market appeal has been presented as the major obstacle in fungal
vaccine development [2–6]. However, this situation is changing rapidly as the incidence of invasive
mycoses has increased with the rising numbers of individuals with increased risk for fungal disease,
including cancer patients receiving chemotherapy, bone marrow transplant recipients, individuals with
acquired immune deficiency syndrome (AIDS), individuals treated with immune function inhibitors,
and others patients with different types of immunosuppression [7–9]. Additionally, certain fungi,
such as Candida auris, an emerging multi-drug resistant pathogen, have received significant global
media attention. Importantly, systemic mycoses are among the leading causes of death and morbidity in
the USA, totaling more than 1.6 million deaths [10,11], with annual costs over $7.2 billion dollars [12–14].
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Hence, the increased incidence of mycoses, the emergence of multi-drug resistant species, and the
rising costs associated with combatting these diseases have recently led to significantly greater visibility
of fungal diseases worldwide.

The global burden of invasive mycoses is massive. For example, there are at least ~250,000 cases of
invasive aspergillosis, 3,000,000 cases of chronic pulmonary aspergillosis, ~223,100 cases of cryptococcal
meningitis, ~700,000 cases of invasive candidiasis, ~500,000 cases of Pneumocystis jirovecii pneumonia,
~100,000 cases of disseminated histoplasmosis, ~10,000,000 cases of fungal asthma, and ~1,000,000
cases of fungal keratitis annually [15–17]. Why, with the increase in the number of cases and the
immense medical need, have more than two centuries of vaccine research failed to produce a single
therapeutic or prophylactic vaccine for a mycosis? Vaccines, in addition to preventing lethal diseases,
improve people’s quality of life [18,19], which is particularly notable for fungal diseases that frequently
require protracted durations of antifungal drugs that have diverse toxicities and costs. Therefore,
we will briefly discuss general issues in fungal vaccine development and then we will focus on some
novel and conceptual advances in the field of peptide vaccines against fungal infections, which may
simplify and accelerate the achievement of a safe and effective antifungal vaccine that is effective in
both immunocompetent and immunologically suppressed individuals.

2. Fungal Vaccine: Some Challenges

One of the first and most difficult challenges in working with fungal vaccines is the need to
determine the target population in which a vaccine is applied, as many invasive mycoses have a
predilection for causing disease in immunosuppressed individuals [7–9]. Specific knowledge is
required regarding the type of protective response necessary to combat a specific fungus and then
there is a need to translate this information into a formulation that remains safe and effective in an
immunocompromised host [20,21].

Another obstacle on the pathway to developing vaccines against fungal infection is the complexity
of the fungal cell. Fungi are eukaryotic, and pathogenic species have marked differences and similarities
with human cells. Fungal cells have a double layer of protection: an inner plasma membrane and an
outer cell wall [22]. The plasma membrane is a phospholipid bilayer that may vary in composition,
due to the presence of specific fungal sterols in different species. Ergosterol, which is similar to human
cholesterol, is particularly important for membrane fluidity and it is essential for viability [23]. The cell
wall is generally organized as a scaffold of carbohydrate polymers to which a variety of proteins and
other components are added, creating a strong but elastic structure [22]. Although there are diverse
variations in polysaccharide composition across species, there are conserved components, such as a
core of branched β-1,3-glucan-chitin [24]. Thus, the fact that fungi have preserved compounds in both
the cell wall and plasma membrane makes it theoretically possible to develop a universal vaccine,
where the presence of a common antigen among closely-related and/or disparate pathogens could
be used to protect against different mycosis or even disease caused by others microorganisms [25,26].
For example, a β-glucan laminarin has demonstrated protection against infection by Candida and
Aspergillus species by means of growth-inhibiting antibodies, particularly when conjugated with the
diphtheria toxoid CRM197 carrier protein [27–29].

An interesting and intriguing aspect of fungal vaccines is the apparent existence of two major
immunological mechanisms for achieving protection. The immune responses that have received the
most study for fungal infection are a Th1 and/or Th17-based response and antibody-mediated immunity.
Although both immune processes cooperate for the final protective outcome, the mechanisms are
different. In particular, Th1 and/or Th17 immune response mediate protection indirectly, promoting an
inflammatory response with recruitment of soluble (antimicrobial peptides, cytokines, chemokines)
and cellular (macrophages, neutrophils) effectors that are responsible for the elimination or control of
the fungal cells at the site of infection [30]. In contrast, antibodies can mediate protection not only by
classical opsonization and complement activation, but also by direct neutralization of factors such as
adhesins or enzymes, which are a critical step for infection, fungal growth, inhibiting fungal escape
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from host immunity, or even directly killing the fungus [31–33]. Additionally, antibody binding to
the fungal cell surface can directly regulate biological processes in the bound cells [34–36]. Recently,
Boniche et al., (2020) described the approaches in immunotherapy against systemic mycosis using
antibodies and the importance of this method for prospectively protecting immunocompromised host
with defective cellular effectors.

Vaccine protection starts with the injection of an antigen source (live, inactivated, subunits, nucleic
acids) that will be taken up/recognized by professional antigen-presenting cells (APCs) (macrophages or
dendritic cells). After antigen phagocytosis, the APCs migrate to lymphoid organs where they interact
with and present the antigen to lymphocytes. These lymphocytes are activated upon recognizing
the antigen and by concomitant receipt of appropriate co-stimulatory signals, and the activated
lymphocytes then produce a cell specific immune response. Activated B cells produce antibodies (IgG,
IgM, IgA, IgE) that can target the invading fungal cells or otherwise modify immune cell responses.
T-Cells are the major representative of cell-mediated immunity; activated Cytotoxic T-lymphocytes
(CTLs, also called cytotoxic T-cells) can directly kill fungi, and T-helper cells (Th1-type) activate
macrophages to enhance their capacity to kill intracellular pathogens. Furthermore, some of the B-
and T-cells maintain themselves for many years as memory B- and T-cells such that they can rapidly
activate and clonally expand when they encounter specific fungal antigens in the future and effectively
combat the invading fungus [37–39]. A vaccine can be comprised by a live attenuated or inactivated
microorganism or by one or more antigens. Antigens may be derived from the microbe, such as nucleic
acids, proteins, carbohydrates or polysaccharides, and their efficacy can be enhanced by using targeted
components of these structures, which is the case with peptide vaccines.

3. Fungal Peptide Vaccine

As discussed, immunization or vaccination using live-attenuated or inactivated pathogens (virus,
bacteria, fungal, etc.) have been used for the induction of antigen-specific responses to protection
against subsequent experimental infections. However, whole microbes contain thousands of distinct
antigens and many are unnecessary for the induction of protective immune responses; moreover,
some may induce unwanted responses, such as allergenic and/or reactogenic responses. These concerns
have led to studies of subunits, such as a protein, from pathogens as vaccine candidates [40,41].
However, proteins are also relatively large and display many antigenic epitopes, which can also lead to
adverse activities along with the induction of protective immune response. Therefore, peptide vaccines
have been explored for their ability to induce desirable T cell and B cell-mediated immune response to
highly defined, specific epitopes [42].

The first indication that a peptide vaccine could modify host-pathogen interactions arose from
studies on tobacco mosaic virus in 1963, when Anderer demonstrated that conjugation of a hexapeptide
derived from viral coat protein and coupled with bovine serum albumin could induce neutralizing
antibodies to the intact virus [43]. Subsequently, Anderer demonstrated that synthetic tri-, tetra-,
penta, or hexapetides also effectively generated neutralizing antibodies [44]. However, the work by
Langebeheim and colleagues (1976) was the first to demonstrate that synthetic peptides derived from
the coat protein of bacteriophage MS2 could induce antibodies that were as effective as those generated
against the intact protein for neutralizing the bacteriophage. These discoveries together with ongoing
technological advances, particularly in refining techniques for sequencing proteins and synthesizing
peptides [45], spurred a marked increase in experimental peptide vaccine research in the 1980s [46].
Studies to date have demonstrated that engineered peptide vaccines can generally be considered as
safe and cost effective when compared to conventional vaccines. However, the peptide’s small size
means that they are weakly immunogenic, such that they require transport molecules, which have the
dual roles of serving as an adjuvant and promoting chemical stability [47].

Currently, the PubMed database (NCBI) contains thousands of reports on clinical studies of peptide
vaccines for therapeutic or prophylactic use for diseases such as HIV, hepatitis C virus (HCV), hepatitis B
virus (HBV), cytomegalovirus (CMV), influenza, tuberculosis, malaria, pneumonia, genital herpes,
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and cancer, among others. However, it is also possible to find hundreds of studies of peptide vaccines
for the treatment of fungal infection such as coccidioidomycosis, histoplasmosis, sporotrichosis,
paracoccidioidomycosis, blastomycosis, aspergillosis, cryptococcosis, candidiasis, and other mycoses.
The focus in this review is on new studies on engineering-based peptides for the treatment of fungal
infections that are particularly due to Paracoccidioides, Aspergillus, Candida, Sporothrix, and Coccidioides.
Table 1 provides an overview of the data from the major references detailed in this review.

Table 1. New vaccine proposals.

Fungi
(Reference)

Vaccine
(Peptide/Protein/Chimeric) Immune Response Results

Paracoccidioides
[48–58]

Peptide vaccine (P10)
P10 primary DC
P10 primary monocyte
derived-DC

CD4+ Th1 cell

Protection against i.t challenge,
reduction of fungal burden both in
immunosuppressed and
immunocompetent mice, and
efficacy of DNA vaccine; all tests
were performed in animal models

Prediction of sequence of
epitopes from extracellular
antigens

Potential to stimulate the
immune response mediated
by B cells and antibodies.

N.A.

Aspergillus [59,60] Peptides from the protein
Asp f1 Th1 cell Peptides from Asp f1 stimulate

production of Th1 cytokines.

Candida
[33,61–84]

Fab and Met6 Peptides Antibody

Mice immunized with either the
Fba or Met6 peptide-DC vaccine
had improved survival and
reductions in fungal burdens in an
immunosuppressed mouse model
of disseminated candidiasis.

14-mer Fab peptide
conjugated each mimotopes
from Met6 (PS2, PS31, PS28,
PS55 and PS76) and

Specific antibody response

The peptides mimotopes induced
a specific antibody response, and
immunization with three of the
peptide conjugate vaccines
protected against disseminated
candidiasis.

18 peptides used to construct a
multivalent recombinant
protein

N.A.
N.A./requires specific HLA
haplotypes to bind these
particular peptide epitopes

Recombinant protein (NDV-3
and NDV-3A) B and T cells

Tested in Phase 1b/2a; one
intramuscular dose was safe and
NDV-3A was immunogenic and
reduced frequency of recurrent
vulvovaginal candidiasis (RVVC)

Recombinant protein (NDV-3
and NDV-3A

Antibodies and CD4+ Th1
Cell

Vaccinated mice were protected
against lethal C. auris infection.

Sporothrix [85–87]

Peptides (ZR1, ZR3, ZR3, ZR4,
ZR5, ZR6, ZR7, ZR8) CD4+ T cell

ZR3, ZR4 and ZR8 promoted cell
proliferation in vitro. ZR8
induced IFN-γ, IL-17A and IL-1β,
and showed protection against S.
brasiliensis infection

Phage displaying of the
peptide KR

Th1 and Th17 cell and
humoral immune response

Immunization with recombinant
phage increased the survival rate
of S. globosa infectedmice.

Coccidioides
[88–96]

Peptides from the protein Pep1 - Induced IFN-γ production when
exposed to lymphocytes.

Peptides from the proteins
Amn1 and Plb - Induced IFN-γ production by

T-cells
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Table 1. Cont.

Fungi
(Reference)

Vaccine
(Peptide/Protein/Chimeric) Immune Response Results

recombinant T cell
epitope-based vaccine (rEBV) Th1, Th2, and Th17 cells

Mice immunized with rEBV had
increased IFN-γ and IL-17
production, and they had
significant reductions in fungal
burden and prolongation of
survival compared to
nonvaccinated mice.

Recombinant chimeric
polypeptide vaccine (rCpa1) Th1 and Th17 cell

rCap1 vaccination generated high
levels of IL-17 in T-cell recall
assays, earlier lung infiltration by
activated Th1 and Th17, and
increased the survival rates.

Ag2/PRA-cDNA transfected
DC T cell

Vaccinated mice had lower fungal
burdens and increased amounts of
IFN-γ

Ag2/PRA primary DC T cell and IgG isotypes

Vaccinated mice did not show any
illness or detectable injury and the
immunization effectively induced
IFN, IL-4 and IL-17 production

Pan fungal [97]
Calnexin peptide
Recombinant calnexin
(rCalnexin)

CD4+ Th1 and Th17 cells

rCalnexin formulated in GP
reduced lung and spleen CFU in
mice infected with B. dermatitidis
or Coccidioides posadasii and
prolonged survival.
Calnexin peptide plus LPS
delivery by i.v. route improved
the expansion of calnexin-specific
T cells.

Chimeric antigen
receptor (CAR)
T-cell therapy

[98–100]

D-CAR T-cells -

D-CAR+ T-cells controlled the
Aspergillus infections in the
presence of immunosuppressive
drugs

LPS, Lipopolysaccharide; CFU, colony form unit; i.v, intravenous; rEBV, bacterium-expressed recombinant
epitope-based vaccine; rCpa1, recombinant chimeric polypeptide vaccine; DC, dendritic cell; RVVC, recurrent
vulvovaginal candidiasis; VVC, vulvovaginal candidiasis; GPs, yeast cell wall-derived glucan particles;
N.A., not analyzed.

3.1. Paracoccidioidomycosis (PCM)

Remarkably, fungal peptide vaccines are most advanced for the treatment of paracoccidioidomycosis,
which is a neglected fungal disease restricted to Latin America [48]. Among the most promising
treatments for Paracoccidioidomycosis is the vaccine using peptide 10 (P 10). This peptide was
mapped based on the sequence of gp43, the main diagnostic antigen of P. brasiliensis. P10 is responsible
for inducing lymphoproliferation and contains a major CD4+ specific T cell epitope and elicits an
IFN-γ-dependent Th1 immune response, which is considered a protective and effective immune
response against the infection with fungi of the genus Paracoccidioides [49–52]. Immunization with P10
proved to be protective in prophylactic and therapeutic murine infection models when injected with
complete Freud’s adjuvant [49]. Significantly, the peptide also protected against lethal infection in
a model using immunosuppressed mice [53]. Rittner and collaborators (2012), using a gene therapy
approach with a pcDNA3 expression vector encoding P10, demonstrated that this therapeutic DNA
vaccine, given prior to or after infection, significantly reduced pulmonary fungal burdens in a murine
infection model [54]. Also in 2012, Magalhães and collaborators showed that adoptive transfer of
dendritic cells (DCs) pulsed with P10, either prior to or after infections, significantly protected mice from
P. brasiliensis [55]. Building on these DC results, studies were also performed on immunocompromised
animals. Bone marrow-derived dendritic cells (BMDCs) pulsed with P10 efficiently reduced the
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pulmonary fungal burdens of immunosuppressed mice previously infected with P. brasiliensis and also
preserved lung tissue by decreasing cellular infiltration into the organ [56]. Further work demonstrated
that P10 was able to activate and modulate both BMDCs and monocyte-derived dendritic cells (MoDCs),
and MoDCs pulsed with P10 similarly protected against pulmonary infection by P. brasiliensis, which is
promising as this treatment most closely mirrors what would be administered to a patient with
paracoccidioidomycosis [57].

The majority of research on antibodies in paracoccidioidomycosis have focused on their use for
serological diagnosis, particularly as high titers of antibodies that are generated by patients with the
acute-subacute form of the disease, which is the more aggressive form [101]. However, studies on
antibody-mediated immune system modulations in response to an experimental model of cryptococcus
infection [102–106] have led to an interest in the generation of protective antibodies for mitigating
infections with Paracoccidioides. In fact, there are polyclonal [107] and monoclonal [108] antibodies
that are protective in paracoccidioidomycosis. However, no vaccine specific for generating a humoral
response is established for the treatment of paracoccidioidomycosis. Notably, a recent analysis of
extracellular antigens from Paracoccidioides species using immunoproteomic approaches combined
with immunoprecipitation using B-cells followed by antigen identification by nanoUPLC-MSE-based
proteomics demonstrated a variety of Paracoccidioides B-cell epitopes, common or specific to members
in the species complex. Using bioinformatic tools, the proteins and the sequence of these epitopes from
extracellular antigens were identified; however, these epitopes have not yet been tested. Nevertheless,
this work highlights an opportunity for a new approach using synthetic peptides with the potential to
stimulate antibody-mediated immune immunity [58].

3.2. Aspergillosis

Among the most feared fungal pathogens that are frequently clinically encountered are Aspergillus
species, which are responsible for causing invasive aspergillosis as well as chronic bronchopulmonary
aspergillosis. Aspergillus fumigatus is one of the most common species that notoriously causes infection
in immunocompromised hosts, particularly in patients undergoing antineoplastic chemotherapy
and those with organ transplants [109–114]. Although several laboratories have investigated the
development of a safe and effective vaccine against aspergillosis and some promising results have
been obtained in an experimental model using homologous proteins, crude extracts or recombinant
allergens from Aspergillus [115–118], there is no vaccine against aspergillosis.

In silico assays, such as the use of artificial neural networks and immune epitope databases,
facilitate the prediction of B cell epitopes and T cell MHC epitopes [119–121]. Subjecting A. fumigatus
allergens to such analyses resulted in the identification of five potential allergic proteins (Asp f1, Asp f2,
Asp f5, Asp f17, and Asp f34) with common B and T cell epitopes for both mice and humans [59]. Hence,
these five proteins with high affinity binding to MHC class I or II epitopes could be used to characterize
constituent peptides and develop vaccine candidates for invasive Aspergillus infections or therapeutics
for allergy immunotherapy for chronic allergic bronchopulmonary aspergillosis. The promise of this
approach is supported by prior work demonstrating that peptides from the protein Asp f1 stimulate
the production of Th1 cytokines [60]. However, these proteins have not yet been validated as effective
vaccine components.

3.3. Candidiasis

Candida species are the most frequently isolated fungal species in blood cultures worldwide
and these opportunistic pathogens cause a wide range of infections. Disseminated bloodstream
infection has an estimated mortality rate of 40–60% even with the use of antifungal drugs [122–125].
Additionally, Candida commonly cause vaginitis, oral thrush, and infections of the skin and nails.
Despite the incredibly high overall disease incidence as well as the frequency and severity of invasive
infections, there is no vaccine for Candida species. However, peptide-based vaccine strategies have
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been considered for over two decades for both prevention and protection thought active and passive
immunization [2,126,127].

Several studies demonstrated that antibodies specific for the peptide Fba or peptide Met6,
which were respectively derived from C. albicans cell surface fructose bisphosphate aldolase (Fab) or
β-1,2–mannotriose [β-(Man)3] protein, were induced by a protective glycopeptide vaccine [33,61–63].
More recently, active immunization using DCs pulsed with either Fba peptide (YGKDVKDLFDYAQE)
or Met6 peptide (PRIGGQRELKKITE) were protective in both neutropenic and immunocompetent
mice [64]. Subsequently, a study of a synthetic 14-mer Fba peptide conjugated to each of the five
peptides mimotopes from Met6 (PS2, PS31, PS28, PS55, and PS76) were tested to explore their protective
capacity [65]. All five peptides mimotopes induced specific antibody responses, and immunization
with three of the peptide conjugate vaccines protected against disseminated candidiasis in mice [65].

Another recent peptide vaccine-based approach was achieved using computational tools to
identify immunologically active compounds to combat candidiasis. A screen of 6030 proteins identified
in the proteome of Candida albicans (sc5314) [66] was undertaken to identify immunodominant HLA
class I, HLA class II and linear and discontinuous B-cell epitopes. The screen identified 214 epitopes
that were subjected to conservation analysis using 22 C. albicans strains with published sequenced
genomes, and 18 peptides displayed 100% conservancy. The 18 peptides were then used to construct
a multivalent recombinant protein to which they added a synthetic adjuvant called RS09. However,
the investigators do not yet describe the efficacy of this polymeric vaccine, and it is notable that this type
of protein peptide-base vaccine will only generate responses in patients with specific HLA haplotypes
that are able to bind these particular peptide epitopes [67]. Nevertheless, this type of vaccine approach
may generate effective immune response using well-defined minimal quantities of antigen, which may
minimize unwanted side effects.

There is a growing literature on the production and release of fungal extracellular vesicles (EV),
which occurs in both ascomycetes and basidiomycetes [68,69]. These EV contain large quantities of
biologically functional compounds that are associated with virulence, including in EV from Candida [70].
Recent data highlights how these relatively stable EV can be used as safe source for diverse antigens,
including peptides, for vaccine development as administration of Candida EV are protective in a murine
systemic candidiasis infection model [71].

The vaccine proposal in the most advanced phase of study for combatting a fungal infection is
NDV-3A [72]. This vaccine is based on C. albicans Als3p, which is a glycoprotein with an agglutinin-like
sequence that is associated with virulence through effects on fungal adherence, invasion and biofilm
formation [73,74]. The first version of this vaccine, NDV-3, was a His-tagged recombinant Als3
protein N-terminus (rAls3p-N), combined with alum, which was protective in a disseminated
candidiasis experimental model [75–78]. In a Phase I clinical trial, NDV-3 was highly immunogenic
and well-tolerated [78]. The more recent version of the vaccine, NDV-3A, was prepared with rAls3p-N
without the His-tag, and again combined with alum [72]. An exploratory Phase 1b/2a study found
that a single intramuscular dose of NDV-3 was safe and immunogenic. In a phase 2 randomized,
double-blind, placebo-control trial, NDV-3A was administered to women with recurrent vulvovaginal
candidiasis (RVVC) and the vaccine was found to be safe and vaccinated women rapidly developed
both T and B cell responses to rAls3p-N. In what the authors describe as “unprecedented”, the vaccine
effectively reduced the occurrence and frequency of vulvovaginal candidiasis (VVC) episodes for up to
12 months [72]. Additionally, serum from patients who responded to NDV-3A contained antibodies
that prevented fungal adhesion and biofilm formation on plastic as well as fungal invasion of vaginal
epithelial cells in vitro [79]. This group recently demonstrated that mice vaccinated with NDV-3A
developed high titers of ant-rAls3-N antibodies and that the presence of these antibodies was sufficient
to block C. albicans from colonizing jugular vein catheters [80]. The NDV-3A is a highly promising
vaccine for treatment of RVVC as well as invasive candidiasis.

NDV-3A has also been tested against C. auris, which is an emerging, multi-drug resistant
species [81,82] that has marked biological differences from C. albicans [83]. Homologs of the C. albicans
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Als3p, glycoprotein base of the NDV-3A vaccine, are present in isolates of different C. auris clades [84].
Preliminary studies have revealed that mice vaccinated with NDV-3A develop antibodies to Als3p
and that these antibodies recognize C. auris yeast cells in vitro, block their ability to form biofilms,
and improve macrophage-mediated fungal killing. In an in vivo murine model, NDV-3A effectively
induced cross-reactive humoral and cellular immune responses that protected immunosuppressed
mice who received a lethal challenge of C. auris. Furthermore, NDV-3A improved the efficacy of
sub-therapeutic doses of micafungin [84]. Thus, the advanced development of NDV-3A is extremely
promising for use not only against C. albicans but also against multidrug-resistant C. auris.

3.4. Sporotrichosis

The species that make up the Sporothrix complex (Sporothrix schenckii, S. brasiliensis, S. globosa and
S. luriei) are distributed worldwide [128], Although cutaneous and lymphocutaneous forms are by far
the most common disease manifestations, disseminated disease may occur in immunocompromised
patients [129,130] and pulmonary disease may manifest after conidia or propagules of the fungus are
inhaled [131]. Significantly, S. brasiliensis has an increased tendency to disseminate even in the absence
of any immune defect [132]. Several countries have reported an increase in the number of cases of
feline zoonotic transmission, and this epidemic is primarily due to S. brasiliensis in Brazil [133,134].
Although monoclonal antibodies have experimentally produced positive results [135,136], the search
for new and more efficient treatment modalities is ongoing.

Given the increasing incidence and disease severity with S. brasiliensis, de Almeida and colleagues
undertook a proteomic analysis using the in-silico prediction tools to identify peptides with high
affinity to MHC class II. They identified seven peptides that met their criteria, which were synthesized
and tested in mice. Three of the peptide vaccines induced proliferation of T cells sensitized by S.
brasilienis in vitro. In subsequent in vivo experiments, immunization with each of the three peptides
mixed in Freund’s incomplete adjuvant reduced the severity of subcutaneous sporotrichosis and one
peptide induced the production of high levels of inflammatory cytokines [85]. This work confirmed
that a peptide vaccine could effectively induce a protective immune response against S. brasiliensis.

Sporothrix glycoprotein Gp70 is a major adhesion factor on the fungal cell surface. The structure of
Gp70 was screened by bioinformatic tools, and four peptides were identified and displayed on phage.
Of the four, the phage displaying of the peptide KR (kpvqhalltplgldr) protected mice against infection
with S. globosa, which is the most common species isolated in Northeast China [86]. Furthermore, the
mice immunized with phage-KR produced high levels of IFN-γ + Th1 and IL-17 + Th17, indicating
that the mechanism for protection by the recombinant phage may occur through the induction of
a protective cell-mediated immune responses. However, serum from mice infected with S. globosa
was also specifically recognized by phage-KR, which suggests that the humoral response may also
be stimulated by the KR peptide [87]. Therefore, the phage-KR vaccine may function to enhance
both protective cell-mediated and humoral immune responses, and this dual mechanism therapeutic
represents a new and potentially safe strategy for the treatment of sporotrichosis.

3.5. Coccidioidomycosis

Coccidioides spp., are environmental pathogens that are responsible for the human respiratory
disease Coccidioidomycosis, which occurs mainly in desert soils of the south-western United States
and parts of Mexico and Central and South America [137–139]. Between 1998 and 2011, the number of
reported cases of coccidioidomycosis increased from 5.3 to 42.6 per 100,000 inhabitants in the endemic
region of the United States [140], which correlated with changes in weather and disturbances in soils.
Recent studies also show that 17 to 29% of pneumonia cases in endemic regions are due to Coccidioides
and the endemic regions are expanding [141,142]. Pursuing a vaccine for Coccidioides is not a new
idea. In fact, a formalin killed spherule vaccine was developed and a clinical trial performed. From
1980–1985, 2876 patients were randomized to receive either three injections of 1.75 mg of FKS or placebo.
Unfortunately, no differences in protection were observed [143,144], which may have been due to the
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low incidence of coccidioidomycosis during this period or the low dosing, which was required due to
toxicity challenges [145].

Following the result with the whole cell vaccine, investigators turned their attentions to specific
antigens for study and development. For example, in 2006, Pep1 was shown to be a cell wall dominant
antigen that was protective in mice challenged with C. posadasii. By applying immunoproteomic
and bioinformatic tools, investigators then identified five peptides from Pep1 that were predicted
to have high affinity to MHC-II, and these peptides were able to induce IFN-γ by peptide-exposed
lymphocytes [88]. Also in 2006, peptides from two additional proteins, Amn1 and Plb, from C. pasadassi
were similarly demonstrated to stimulate IFN-γ production by T-cells [89]. In 2012, an epitope base
vaccine (rEBV) [90] consisting of selected immunogenic peptides derived from Pep1, Amn1 and Plb
was developed [88,89]. The rEBV significantly reduced fungal burdens, elevated IFN-γ and interleukin
(IL)-17 production, as well as prolonged survival in vaccinated mice challenged with a lethal inoculum
of Coccidioides compared to untreated infected mice [90].

More recently, a recombinant chimeric polypeptide vaccine (rCpa1) [91] was generated using
the most immunogenic fragment of Ag2/Pra; the full lengths of Cs-Ag and Pmp1; and promiscuous,
immunodominant T-cell epitopes derived from Coccidioides posadasii, Pep1, Amn1, and Plb.
Administration of rCpa1 with the adjuvant GCP to both C57BL/6 and HLA- DR4 transgenic mice
induced high levels of IL-17 in T-cell recall assays, earlier lung infiltration by activated Th1 and Th17,
and increased the survival rates of mice lethally infected with Coccidioides compared to those that
received GCPs alone [91].

Ag2/PRA has also been investigated for utilization in a dendritic cell vaccine for
coccidioidomycosis [92–96]. In 2005, Ag2/PRA cDNA transfected into an immortalized dendritic JAWS
II cell line was used to immunize mice challenged with C. posadasii, and the DC vaccine reduced
the fungal burdens in both the lungs and spleens, and increased the amount of IFN-γ in the lung
tissues of immunized compared to control mice [92]. Subsequently, Ag2/PRA-cDNA transfected bone
marrow-derived dendritic cells administered intranasally were shown to migrate in blood, lung and
thymus, and the vaccine induced Ag2/PRA-specific T cell response [94]. Safety testing revealed that
intranasal immunization with an Ag2/PRA primary DC vaccine did not cause any illness or detectable
injury to the mice. Immunization effectively induced the production of IFN, IL-4 and IL-17 in the lungs
and lymph nodes of the vaccinated animals. Additionally, vaccination induced the production of all
IgG isotypes [95]. These studies highlight the promising potential of this DC vaccine (Ag2-DC) for
coccidioidomycosis as it effectively induced both cellular and humoral immune responses [92,94,95]

3.6. Pan-Fungal Vaccine

Although a vaccine to a single fungal pathogen would be heralded as a remarkable achievement,
there is a desire to create a pan-fungal vaccine. The possibility for this is presented by work using
monoclonal antibodies to conserved fungal cell surface epitopes to deliver cytocidal radiation [146–148].
However, peptide-based vaccines also hold great potential. In 2015, transgenic CD4+ T cells were
used to identify an amino acid determinant within chaperone calnexin that was determined to
be conserved across ascomycetes species [97]. The administration of calnexin in glucan particles
elicited calnexin-specific CD4+ T cells, and vaccinated mice demonstrated resistance to infection by
Blastomyces dermatitidis, Histoplasma capsulatum, Pseudogymnoascus (Geomyces) destructans, Fonsecaea
pedrosoi, and A. fumigatus [97]. Similarly, the 13-mer peptide (LVVKNPAAHHAIS), which was generated
from the conserved region amino acid determinant within chaperone calnexin, stimulated protective
immune responses, and vaccination reduced the severity of infection with B. dermatitidis [97].

4. Chimeric Antigen Receptor (CAR) T-Cell Therapy

CAR T-cell therapy has primarily been used in combating diverse cancers [149,150], but there is a
growing interest for its use in other diseases, including mycoses. CAR T-cell approaches use a patient’s
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T-cells to engineer them into chimeric cells that target both a specific antigen and activate other T cells.
Currently, the target antigens are glycoproteins and lipids [151,152].

D-CAR is the second-generation of CAR T-cells therapy that targets Dectin-1, which is a C-type
lectin receptor specific for β-glucan that is commonly expressed on the surface of diverse fungi [98].
These D-CAR T cells displayed specificity to Dectin-1 that was fused with CD28 and CD3-ζ such
that effective T-cell activation signaling was generated. The administration of D-CAR T-cells to
immunocompromised mice with invasive aspergillosis resulted in an increase in the levels of IFN-γ
and impaired the growth of the Aspergillus [99]. Investigators in this area describe how CAR T-cell
approaches can be dually impactful by designing the cells to target both the patient’s underlying
cancer as well as a concomitant invasive fungal infection [100]. The use of engineered CAR T-cells
engineering has been remarkably effective in cancer immunotherapy, and it has shown promise as
a therapeutic for combating infections by viruses [153–159] and fungi [99], albeit it remains in early
phase development for the treatment of mycoses.

5. Conclusions

Fungal diseases are widely neglected [160] and this extends to the development of vaccines to
prevent and treat individuals with mycoses. Given that there are over 300 million people suffering
from fungal infections annually with over 1.5 million of these dying [16,161,162], it is imperative
that vaccine development be accelerated to combat these diseases. As one of the main factors that
contribute to the increased frequency and severity of disease are defects cellular and/or humoral
immunity [163], vaccine strategies must be safe and effective in hosts with intact and compromised
immune systems. Advances in proteomics and system biology have facilitated the advancement
of a number of vaccine proposals, particularly as they permit the localization of proteins and the
characterization of their modifications, functions and interactions [164]. Predictions of epitope biology
permit the rapid selection of peptides with expected immunogenicity that can be injected into hosts
for presentation by professional APCs for subsequent recognition by B or T lymphocytes to induce a
humoral or cellular immune response, respectively. The advancing studies with peptide vaccines and
DC-peptide priming set the stage for future translation of these strategies from the bench to the bedside.
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