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ABSTRACT
Background Intellectual disability (ID) is a highly
heterogeneous condition affecting 2% of the population
worldwide. In a field study conducted in a highly inbred
area of Northeastern Brazil, we investigated a
consanguineous family in which seven adults presented
syndromic ID.
Methods Genome-Wide Human SNP Array 6.0
(Affymetrix) microarray was used to determine regions of
homozygosity-by-descent and whole exome sequencing
(WES) was performed in one affected individual using
Extended Nextera Rapid-Capture Exome and Illumina
HiSeq2500.
Results We found two regions with an logarithm of
the odds (LOD) score of 3.234: a region spanning
4.0 Mb in 19q13.32-q13.33 and a pericentromeric
20 Mb area in chromosome 2 (2p12-q11.2). WES
disclosed in the critical region of chromosome 19 a
homozygous variant (c.418C>T, p.Arg140Trp) in
Mediator complex subunit 25 (MED25), predicted as
deleterious by PolyPhen-2, Provean, Mutation Taster and
Sorting Intolerant From Tolerant (SIFT). MED25 is a
component of the Mediator complex, involved in
regulation of transcription of nearly all RNA polymerase
II-dependent genes. Deleterious mutations in MED12,
MED17 and MED23 have already been associated
with ID.
Conclusions These findings demonstrate that the
combination of field investigation of families in highly
inbred regions with modern technologies is an effective
way for identifying new genes associated with ID.

INTRODUCTION
Intellectual disability (ID) is a highly heterogeneous
condition affecting 2% of the population world-
wide. It is the most common motive for referral to
clinical genetic centres and one of the most import-
ant unsolved problems in healthcare.1 2 The genetic
basis of autosomal recessive ID (ARID) is extremely
heterogeneous and the number of underlying gene
defects may well go beyond a thousand.3 Currently,
fewer than 100 loci and genes have been identified
associated with ARID (OMIM), which is particu-
larly prevalent in highly consanguineous popula-
tions and genetic isolates.4 5 In Brazil, the frequency
of consanguineous marriages is about 15 times
higher in the Northeast region (9%) than in the
Southern part of the country (0.62%).6–8 A study

conducted in small communities in Northeastern
Brazil identified rates of consanguineous unions
ranging from 6% to 41.1%.9 As part of a research
project on consanguinity and disability aiming the
identification of new disease genes, which is being
performed in the backlands of Northeastern Brazil,
we ascertained several families with multiple indivi-
duals with disabilities and selected some of them for
additional investigation. Subjects of the current
investigation belonged to a large inbred family in
which three consanguineous unions generated seven
individuals with moderate to severe ID associated
with a distinct facial phenotype.

METHODS
Clinical analysis and family material
After obtaining a written consent from the legal
guardians of subjects of this study, a detailed clin-
ical and neurological evaluation was performed. A
pedigree was constructed based on the family infor-
mation (figure 1) and blood samples from affected
and unaffected family members were collected for
DNA extraction (Autopure LS device, Gentra
Systems). The protocol of data sampling and the
consent procedure were reviewed and approved by
the National Committee for Ethics in Research—
CONEP (Process 0359.0.133.000-11).

Linkage study
Linkage study was performed using DNA samples
from three affected (V-8, V-12 and V-13) and three
healthy individuals (IV-4, V-6 and V-10) from the
same family. Genotyping was done with the
Genome-Wide Human SNP Array 6.0 (Affymetrix,
Santa Clara, California, USA), and the data were
analysed using HomozygosityMapper for homozy-
gosity mapping.10 The Alohomora software was
used to convert the obtained data into files for
linkage analysis, Pedcheck for checking Mendelian
segregation and Merlin software to obtain multi-
point LOD scores.11 12 The disease was analysed as
an autosomal recessive mode of inheritance with
complete penetrance and the disease allele fre-
quency was estimated as 0.001.

Exome and Sanger sequencing
Whole exome sequencing (WES) was performed in
a DNA sample from one affected individual (V-12)
using Extended Nextera Rapid-Capture Exome and
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sequenced in Illumina HiSeq2500 (Illumina, San Diego,
California, USA). Exome reads were analysed in a standard
Bioinformatics pipeline based on Burrows-Wheeler Aligner
(BWA) for sequence alignment on GRCh37 reference, Broad
Institute GATK for genotyping, SnpEff for variant annotation
and ExomeDepth for CNV detection.13–16 Potentially deleteri-
ous variants detected in regions of homozygosity-by-descent and
not present in 61 486 exomes from the Exome Aggregation
Consortium (ExAC) and in Brazilian population controls (608
healthy individuals) were selected for further scrutiny and segre-
gation analysis by Sanger sequencing. PCR products were ampli-
fied using the following primers: forward: 50-GGCGTTGC
TTCTGATTCCAT-30; reverse: 50- GAGTCCTCACCTCCCCAA
TC-30; and the reaction products were analysed in the ABI 3730
DNA Analyzer equipment (Applied Biosystems, Carlsbad,
California, USA). The results were analysed using the Sequencher
5.0 and MEGA 5.

RESULTS
We evaluated seven individuals (two men, ages 33–51) belong-
ing to three related consanguineous families. Variable degree of
ID was present in all seven individuals: moderate in two (V-3
and V-4) and severe in the remaining five. They all are illiterate
and never attended regular school. One individual (V-3) was
able to work supervised, and the severe patients were totally
dependent for basic care and able to speak a few words and
most of the time utter incomprehensible sounds and need con-
stant vigilance. Behaviour problems, as aggressiveness and
sexual arousal, were occasionally present. The facial character-
istics were very similar in all affected individuals: tall forehead,
prognatism, prominent chin, very large and overhanging nose
tip (figure 2). This facial phenotype was not present among
parents and the five clinically evaluated unaffected siblings. The
legal guardians of patients have provided consent for publica-
tion of these photographs.

Figure 1 Family pedigree: individuals with intellectual disability are represented in filled symbols and half-filled symbols indicate heterozygous
individuals. Genotyped individuals are underlined.

Figure 2 Facial features of affected individuals: tall forehead, prognatism, prominent chin and very large and overhanging nose tip. (A, B) V-1 age
43 years; (C, D) V-3 age 37 years; (E, F) V-4 age 33 years; (G, H) V-8 age 51 years; (I, J) V-12 age 43 years; (K, L) V-13 age 38 years; (M, N) V-16
age 42 years.
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Autozygosity mapping and parametric linkage analysis led to the
identification of two linkage regions which get the same maximum
LOD score of 3.234 on chr19: 47 658 320–51 657 650
(19q13.32-q13.33) and on chr2: 76 245 774–102 080 926
(2p12-q11.2). Sequences of 167 genes are located on candidate
region of chromosome 2 and 214 genes on candidate region of
chromosome 19. Those regions are devoid of genes associated with
ARID, with the exception of the recently described autosomal reces-
sive mental retardation-41 (MRT41; OMIM 615637), caused by
truncating homozygous mutation on KPTN gene, located on
chromosome 19.17 MRT41 was recognised in four individuals with
non-syndromic ARID from consanguineous Amish families.

The coverage of WES with at least 10 reads was 99.18%,
every base was independently read on average 158 times and a
total of 95 313 806 sequences were generated. We selected for
further evaluation homozygous coding variants present in a con-
sensus coding transcript not present in controls. The only
remaining coding variant in the linkage regions which fulfil
these criteria of possible disease-causing variant was the mis-
sense change c.418C>T (p.Arg140Trp; chr19:50 332 240;
NM_030973) in MED25 gene (OMIM 610197) (figure 3). It
encodes one of the subunits from Mediator’s tail region that are
required for regulating expression of most RNA polymerase II
(polII) transcripts.18 This variant cosegregated with the disease
and was not present in Brazilian population controls (608
healthy individuals) as well as in 61 486 exomes from the ExAC
(Cambridge, Massachusetts, USA; http://exac.broadinstitute.org)
(18 November 2014 accessed date). Moreover, p.R140W is con-
served across MED25 orthologues and predicted as deleterious
by PolyPhen-2, Provean, Mutation Taster and SIFT.19–22

DISCUSSION
ID is a highly heterogeneous disorder, and identification of
autosomal genes associated with this condition, in particular in
families with few affected members, only recently became more
feasible, mostly because of more efficient technologies for
linkage analysis and identification of the responsible gene. On
the other hand, the search for large consanguineous families
with multiple affected individuals once more proved to be an
effective way for identifying new genetically determined

autosomal recessive forms of ID. Indeed, the number of X
linked ID associated genes currently surpasses the frequency of
ARID related genes, because most studies of the genetic causes
of ID were concentrated on X-chromosome-linked ID.
However, it is estimated that X linked forms represents only
10% of ID, which suggests that a large number of autosomal
genes associated with ID remain to be recognised.4 23

The Mediator complex (MED) is a multi-protein complex
composed of more than 20 subunits that form four distinct
modules evolutionarily conserved in eukaryotes required for
regulating expression of most RNA polII transcripts, which
include protein-coding and most non-coding RNA genes, per-
forming its function by interacting directly with RNA Pol II acti-
vators bound at regulatory elements and also elongation factors
of target genes.18 24 25 Several studies using experimental
models (Danio rerio, Drosophila, Caenorhabditis elegans and
mouse models) indicated that some components of the MED
may interact with specific transcription factors, thus regulating
the expression of distinct groups of genes during development
and/or cell differentiation.26

In recent years, functional studies showed the importance of
MED25 in the activation of transcription by several transcrip-
tion factors, including the retinoic acid receptor (RARα),27

orphan receptor (HNF4α),28 chondrogenic factor (Sox9),29

PEA3 group members,30 activating transcription factor 6
(ATF6α)31 and estrogen receptor α.32 These factors are involved
in different developmental processes and they control multiple
metabolic pathways,28 32 development of motor and sensory
neurons,33 response of human cells to endoplasmic reticulum
stress, which are critical for cell survival and defects can cause
neurodegeneration34 and chondrogenesis.29

Morpholino-mediated knockdown of med25 induced palatal
malformation in zebrafish, which is comparable with that
observed in zebrafish sox9 mutants.29 Furthermore, expression
analysis of MED25 in wild-type rats tissues detected ubiquitous
expression and highest expression levels were found in dorsal
root ganglia, cerebellum, cortex and optic nerve indicating an
important involvement of MED25 in the nervous system.35

A single report of a large family associates the homozygous
variant p.Ala335Val in MED25 with Charcot–Marie–Tooth

Figure 3 Mutation in MED25: (A)
Whole exome sequencing (WES) image
of the MED25 BAM file base counts,
highlighting the c.418C>T variant. (B)
Sanger sequencing electropherograms
showing homozygous control (arrow),
heterozygous (arrow) at position c.418
of MED25 gene in a carrier (III-2) and
homozygosity (arrow) in an affected
individual (IV-1).
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disease type 2B2 (CMT2B2, OMIM #605589).35 The variant
attributed to CMT2 on MED25 (c.1004C>T) has a population
frequency among Europeans (non-Finnish) of 1/160
(0.006042), which is quite large for a rare disease. Additionally,
no other family with CMT2B2 was reported since the original
publication of 2009 and no other gene belonging to MED was
associated with CMT. Additionally, no other gene coding for
proteins belonging to MED was ever associated with CMT.
Finally, since there is no evidence for CMT-like features in the
presented Brazilian family, it appears that the p.Ala335Val
variant identified in CMT2B2 patients might be a rare benign
variant rather than the causative mutation. Mutations in other
members of MED have been already assigned to other syn-
dromes. Deleterious missense variants in MED12 have been pre-
viously associated with Ohdo, Lujan and Opitz–Kaveggia
syndromes, all X linked syndromic forms of ID.36–38 A homozy-
gous missense mutation (p.L371P) in MED17 has been asso-
ciated with syndromic severe ID with infantile cerebral and
cerebellar atrophy.39 Finally, a homozygous disease-causing
coding variant (p.R617Q) within the MED23 gene was identi-
fied in an Algerian consanguineous family with five affected
individuals with non-syndromic ID. This mutation modified the
response of JUN and FOS immediate early genes to serum mito-
gens by altering the interaction between enhancer-bound tran-
scription factors and Mediator. Dysregulation of these genes
have been also observed in cells from patients with other neuro-
logical disorders, including Opitz–Kaveggia, caused by MED12
mutation.40

These findings emphasise the critical role of Mediator in
brain functioning and development and highlight the import-
ance of a combined strategy of field evaluation in remote areas
in which large inbred families are common and state-of-art tech-
nologies for identification of novel deleterious variants in genes
currently not associated with a distinct phenotype.
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