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Three-dimensional protein structure is directly correlated with its function and its
determination is critical to understanding biological processes and addressing
human health and life science problems in general. Although new protein
structures are experimentally obtained over time, there is still a large difference
between the number of protein sequences placed in Uniprot and those with
resolved tertiary structure. In this context, studies have emerged to predict protein
structures by methods based on a template or free modeling. In the last years,
different methods have been combined to overcome their individual limitations,
until the emergence of AlphaFold2, which demonstrated that predicting protein
structure with high accuracy at unprecedented scale is possible. Despite its
current impact in the field, AlphaFold2 has limitations. Recently, new methods
based on protein language models have promised to revolutionize the protein
structural biology allowing the discovery of protein structure and function only
from evolutionary patterns present on protein sequence. Even though these
methods do not reach AlphaFold2 accuracy, they already covered some of its
limitations, being able to predict with high accuracy more than 200 million
proteins from metagenomic databases. In this mini-review, we provide an
overview of the breakthroughs in protein structure prediction before and after
AlphaFold2 emergence.
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1 Introduction

Protein is the term proposed by the Swedish chemist Jacob Berzelius to compounds
containing nitrogen and constituted by a combination of amino acids linked by a bond,
called peptide bond (Fruton, 1985; Wisniak, 2000; Lehninger et al., 2005; Voet et al., 2014).
They are responsible for housekeeping and specific functions essential to life, such as cell
structural support, immune protection, enzymatic catalysis, cell signal transduction to
transcription and translation regulation (Pearce and Zhang, 2021). The biological
function of a protein depends on its tertiary/quaternary structures that derives ultimately
from the folding of a polypeptide sequence(s) considering physical chemistry principles and
the lowest free energy level, being the understanding of protein folding one of the most
important goals in structural biology (Lehninger et al., 2005; Voet et al., 2014).

Experimentally, tertiary protein structures are resolved by X-ray crystallography, nuclear
magnetic resonance and electron cryomicroscopy (cryo-EM). Nevertheless, those techniques
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are complex, time consuming, expensive, and often the structure is
not in its native form. Under these constrains, it is no surprise that
the number of proteins with resolved tertiary structures is small
(200,988 PDB entries) compared to the large number of proteins
sequence known (229,580,745 entries on UniProtKB as of January
2023). This is an open challenge waiting for innovative ways to
develop novel protein structure prediction approaches such as the
ones using computationally models to predict the three dimensional
protein structures starting from a polypeptide sequence (Dill et al.,
2007; Nassar et al., 2021).

Several algorithms and web servers have been developed with
the aim to improve the protein structure prediction. The relevance of
these efforts are underscored by the different application that shall
be affected including rational drug design, mutational studies and
structural comparison, evolutionary analysis, folding studies. Here,
we provide an overview of the methods developed to perform
protein structure prediction to compare with AlphaFold2, which
combines neural networks and homology modeling to generate
models that may have experimental accuracy in a growing
number of examples. We also discuss its applicability, limitations
and efforts to improve the overall algorithm’s performance.

2 Structure prediction methods

The prediction methods are usually divided into template-based
modeling (TBM) and free modeling (FM), considering the use or not
of templates (Gromiha et al., 2018; Bongirwar and Mokhade, 2022;
Paiva et al., 2022), even though, recently, some TBM methods use
energy-guided model refinement, and part of FM uses fragment-
based sampling approaches, extracting information from Protein
Data Bank (PDB) through machine learning. Within these two
groups, the algorithms developed are usually classified into three
different groups: ab initio (a FM methodology), threading/fold
recognition (a TBM methodology), and homology (a TBM
methodology) (Gromiha et al., 2018; Agnihotry et al., 2022).
Despite controversial, this classification corresponds to the
categories from the Critical Assessment of Structure Prediction
(CASP), a biennial competition with the aim to establish the
current state of the art in protein structure prediction, which
contains three categories: TBM, FM, and an intermediate
category, FM/TBM. In this contest, participants submit their
models for proteins whose experimental structure has not been
published yet (Kryshtafovych et al., 2019).

The ab initio approaches are based on the thermodynamics
hypothesis that the native protein structure presents the lowest free
energy possible (Hardin et al., 2002; Yuan et al., 2003; Gromiha et al.,
2018; Agnihotry et al., 2022). The idea of these methods are to
predict new folds considering physicochemical properties from the
protein fold process, such as hydrogen bonding, contact potential
energy, PDB-derived secondary structure propensities, and folding
involving both bonded and non-bonded interactions. The ab initio
method may or may not take into account motif identification in
databases using small fragments. Some reviews even divide this
category into two distinct methodologies, one dependent and
another independent on database information. In this mini-
review, we will use the term ab initio for methods that model
protein structure without a template and that use the laws of

thermodynamics as a basis, even though FM methods commonly
exploit the information from known structures.

The main advantage of ab initio methods is the capacity to
obtain novel and unknown protein folds (Dorn et al., 2014).
Nevertheless, the complexity of the problem and the high
number of conformational possibilities is computationally
demanding, limiting the use for long protein sequences. Methods
that use fragments may help to reduce the conformational space, but
again avoid the prediction of new protein folds. One example of ab
initio method that considers fragments is QUARK, a template-free
novel program developed by Xu and Zhang (2012) in 2012. Briefly,
this program breaks the protein sequence into fragments of
20 amino acids, searches for structure in a database, and then,
using replica-exchange Monte Carlo simulations, unites the
fragments taking into account the force field and energy terms,
constituting a complete model.

The threading/fold recognition methodologies are based on the
idea that structure is more conserved than the amino acid sequence
and has a limited number of protein structure folds in nature (Rost
et al., 1997; Dorn et al., 2014; Gromiha et al., 2018; Agnihotry et al.,
2022). They consist in choosing the best 3D template of known
foldings that fit well in the target sequence considering a scoring
function built on pairwise potential, second structure comparison, as
well as solvent properties. Thus, the target sequence is aligned with
the structure model with the optimal scoring function, reorganizing
the atoms of the target sequence in the aligned backbone. Finally, the
affinity of the sequence with three-dimensional fold is verified
followed by a manual verification. GenTHREADER is a program
that uses threading techniques to evaluate the alignments, made
using a sequence profile method, and then generates models that will
be evaluated by a neural network to give a confidence measure
(Jones, 1999).

The homology models derive from the fact that two amino acid
sequences that are highly similar have similar structures (Dorn
et al., 2014; Gromiha et al., 2018; Agnihotry et al., 2022; Sanjeevi
et al., 2022). For this, the target sequence is aligned to a sequence in
which the structure is known and an atomic model for the target
protein is generated taking into account its similarities with the
template backbone, followed by modeling loop regions and
sidechains. The final step is to submit the model to energy
minimization and evaluate it using the Ramachandran plot.
Usually, homology methods achieve protein structures with
higher accuracy than other methodologies. But, as other TBM
methods, they are limited due to their inability to predict structures
for new proteins, as they are dependent on templates. SWISS-
MODEL is an automated system that uses homology modeling to
predict a three dimensional structure of a protein (Guex et al.,
2009; Kiefer et al., 2009). It was the first web server available to
generate a 3D protein structure. This program integrates and
automates all the processes involved in a homology modeling
method, creating a fully automated workflow using a PERL
based framework (Kiefer et al., 2009). The program presents an
interface friendly for non-bioinformatician users and information,
such as PFAM domain annotation and other tools from SWISS-
MODEL (Kiefer et al., 2009).

Recently, new hybrid techniques have been published
combining tools or improving known methods with artificial
intelligence approaches. This was possible in part due to the
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development and improvement of computer processing. One of the
breakthrough methods that not only combines methodology but
also uses artificial intelligence is AlphaFold, an algorithm that beats
the other tools in CASP13 and currently represents the state of art in
protein structure prediction. Figure 1 depicts a timeline of the
emergence of protein structure prediction programs/web servers
and their classification considering the groups of methods adopted
in this review, as well as other important dates for this field. More
comprehensive and detailed reviews about protein structure
prediction methods/tools can be found in Paiva et al. (2022),
Bongirwar and Mokhade (2022).

3 AlphaFold

In 2018, DeepMind, a startup of Google, presented a new
software that best performed in the 13th edition of CASP, named
AlphaFold. In this competition, AlphaFold achieved the best
position in the FM (best-of-five), reaching a summed z-score of
52.8 versus 36.6 from the second place and, combining FM and FM/
TBM categories, achieved 68.3 z-score versus 48.2 (Senior et al.,
2019). Even without using a template, AlphaFold also scored well in
the TBM category (Senior et al., 2019).

The first version of AlphaFold used deep learning to predict the
protein structure, demonstrating that it is possible to learn protein
specific potential by training a neural network giving only the
protein sequence. It contains a convolutional neural network that
is trained by PDB structures to predict the distances between
residues, creating distograms. From the amino acid sequence of
the target protein, the neural network predicts a distogram based on
multiple sequence alignment (MSA) features, in which a separate
output from prediction network predicts the probability of backbone
torsion distribution. The combined potential obtained by both ends
is then optimized by gradient descent, predicting the protein
structure itself (Senior et al., 2020).

Presented at CASP14 between May and July 2020,
AlphaFold2 predicted protein structures with more accuracy than
other competing methods, demonstrating a root-mean-square
deviation (RMSD) among prediction and experimental backbone
structures of 0.8�A versus the 2.8�A from the next best performing
method. Moreover, AlphaFold2 scored 244.0 in summed z-scores
compared with 90.8 for the next closest group (Jumper et al., 2021a;
Jumper et al., 2021b). The great performance of AlphaFold2 in all
Casp14 categories is depicted in Figure 2.

It is important to emphasize that AlphaFold2 contrasts
considerably from the first version of AlphaFold. The authors

FIGURE 1
Timelinewithmain events and programs/webserver in the protein structure prediction. Colored boxes indicate themethod or important event in the
field.
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attribute the high performance of AlphaFold2 by “incorporating
novel neural networks architectures and training procedures based
on the evolutionary, physical and geometric constraints of protein
structures” (Jumper et al., 2021b; Bouatta et al., 2021; Callaway,
2022). AlphaFold2 uses as an input amino acid sequence to
construct a MSA based on several databases of protein sequences
to determine which parts of the sequence are mutation prone,
detecting correlation between them. It also identifies proteins
with similar structure with the input that will be used to build an
initial representation of the target sequence (template), named as
pair representation. Both strategies are not new and are shared by

other algorithms in CASP14. Nevertheless, the breakthrough of
AlphaFold2 is due to its neural network architectures, more
specifically, the two neural network modules, evoformer and the
structure module (Jumper et al., 2021b; Oxford Protein Informatics
Group, 2021; Skolnick et al., 2021).

The evoformer extracts information from MSA and templates,
exchanging information between them in flows back and forth
throughout the network, improving the assessment of the MSA,
that in turns modifies the protein structures hypothesized by the
templates, allowing the MSA and templates in the correct
“embedding space”. It consists of two transformers, networks that

FIGURE 2
The top 10 programs and/or web servers in CASP14 in (A) TBM-easy, (B) TBM-hard, (C) TBM/FM, and (D) FM categories considering summed
z-score. Data extracted by CASP official website.
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use attention to boost the speed with which a model can be trained,
each of them specialized for a type of data, MSA or pair
representations, with a clear communication channel between
them. This allows the MSA transformer attention mechanism to
incorporate information from the pair representation, adding a bias
term from it, augmenting the attention mechanism and allowing it
to pinpoint interacting pairs of residues. The pair representation
transformer also works in a similar way, but includes an attention to
terms of triangles of residues. The structure module, that also
contains an attention architecture, uses both representations to
prioritize the orientation of the protein backbone, considering the
residue rotations and translations, localizing each side chain of each
residue in highly constrained within a frame, followed by local
refinement and minimization by gradient descent (Jumper et al.,
2021b; Oxford Protein Informatics Group, 2021; Skolnick et al.,
2021).

Protein-protein interactions are the basis of the biological
process, and high-resolution structural characterization of these
interactions give rise to insights of their molecular mechanisms
and function, as well as direct the design of new drugs that are able to
modulate these molecular pathways. Alphafold2 has been used to
predict protein-protein interaction, using flexible linkers or artificial
gaps and, in general, it predicted heterodimeric protein complexes
accurately, exceeding docking approaches usually used in these
analysis (Bryant et al., 2022; Yin et al., 2022). Nevertheless, it was
limited to predict complexes, such as antigen-antibody and
AlphaFold2 accuracy was also limited to predict complexes with
protein from different species (Yin et al., 2022). In October 2021,
DeepMind extended Alphafold2 to multiple chains - called
AlphaFold-Multimer (Evans et al., 2022). For this, AlphaFold-
Multimer was trained with protein complexes, and a series of
changes in the code were made. The developers observed that
performance was better in homomeric than heteromeric
interfaces (Jumper et al., 2021b) and it did not predict binding of
antigen to antibodies (Yin et al., 2022). Both, AlphaFold2 and
AlphaFold-Multimer, are open-source codes and are available on
github (https://github.com/deepmind/alphafold).

In the same year, in a partnership between DeepMind and the
EMBL-European Bioinformatics Institute (EMBL-EBI), the
AlphaFold Protein Structure Database (AlphaFold DB—Available
in https://alphafold.ebi.ac.uk) was created, making available over
360,000 predicted structures from 21 organism proteomes (Varadi
et al., 2022). Today, AlphaFold DB has over 200 million entries from
the human and 47 other organism proteomes, with the structure
predictions and their respective analyses freely available to the
scientific community. Porta-Pardo et al. (2022) demonstrated
that AlphaFold2 increases the structural coverage from 48% to
76% of all human protein residues, dropping the number of
human protein without structural coverage from 5027 to 29.
Moreover, they quantified that, among the 5027 of the proteins
without structure previously, 4459 had structure prediction for over
50% of the protein’s length (88,7%), in which 1408 with high-
accuracy (28%). Despite the large amount of data, protein sequences
containing non-standard amino acids, like selenocysteine, have been
excluded, as well as multiple isoforms codifying by the same gene
(Varadi et al., 2022). The database usability is easy, as input, protein
name, gene, Uniprot accession number or organism can be used. As
output, the AlphaFold DB provides the atomic coordinates in PDB

and mmCIF formats and Predicted Aligned Error (PAEs) in JSON
format. It is also possible to give feedback about the prediction
structure through “Looks great” or “Could be improved” buttons.

Considered as the ground-breaking application of AI in science,
AlphaFold has promised to revolutionize structure biology. Its
application has been considered to design better protein
expression experiment; To solve experimental structures faster,
overcoming tedious model building, especially for X-ray
crystallography, and to facilitate the interpretation of low-
resolution cryo-EM; To protein design and drug development;
To examine the effect of mutation in protein function,
elucidating their potential impact on human diseases; To provide
novel insights in poorly known molecular mechanisms (Perrakis
and Sixma, 2021; Porta-Pardo et al., 2022). In this context, Noone
et al. (2022) has demonstrated that indeed AlphaFold offers
shortcuts to solve protein structures experimentally, predicting
the remaining N-terminal region of PTX3 complex, which was,
then, validated with cryo-EM class averaging. The hybrid cryoEM/
AlphaFold structure allowed the mapping of the putative sites and
regions of interaction, giving insights of the functions of PTX3.

However, despite its breakthrough accuracy and performance to
predict protein structures, AlphaFold2 models have important
limitations. First, AlphaFold2 has difficulty to predict intrinsically
disordered proteins/regions (Ruff and Pappu, 2021) and loops
(Stevens and He, 2022), especially considering the importance of
the latter for drug screening and design, since they are exposed in
protein surface and readily available to solvent and other proteins.
Ruff and Pappu (2021) demonstrated that residues and regions
predicted with low accuracy by AlphaFold2 overlaps intrinsically
disordered regions, while Stevens and He (2022) showed that only
short loops (<20 amino acids) are predicted with high accuracy by
AlphaFold and it has the tendency to over-predict secondary
structures in loop regions, usually alpha helix. Both regions are
known to be hypervariable and flexible across orthologies, making it
difficult to uncover evolutionary constraints from MSA.

Second, AlphaFold2 predicts only a single conformer, not
identifying the apo and holo forms. In 67% of a dataset tested,
AlphaFold prediction resembled holo form and the proteins were
less predictable when the conformational differences between apo
and holo forms increased (Saldaño et al., 2022). Moreover, Azzaz
et al. (2022) demonstrated that structure prediction of membrane
proteins by AlphaFold is not reliable, mainly because it presents
inconsistencies in the location of the transmembrane domains. They
stress that the protein environment influences the amino acid
sequence, imposing folding constraints. These evidences together
with the AlphaFold’s inability to predict structures with metal ions,
cofactors and other ligands, complexes with DNA or RNA, or post-
translational modifications, such as glycosylation, methylation and
phosphorylation (Perrakis and Sixma, 2021) highlight the steps to be
overcome to improve AphaFold models in drug screening and
design. Indeed, Scardino et al. (2023) demonstrated that
AlphaFold models showed worse performance in high-
throughput docking when compared to their corresponding
experimental PDB structures, while Wong et al. (2022) showed
that AlphaFold2 protein structure prediction exhibits weak
performance on reverse docking in a search for binding targets
of bacterial compounds, emphasizing that, even though
AlphaFold2 provides rich structural information, more accurate
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models of protein-ligand interactions are needed to improve use of
AlphaFold2 for drug discovery.

Third, AlphaFold fails to predict defects in protein folding due to
point mutations. As demonstrated by Buel and Walters (2022), the
differences between mutated and wild-type models predicted by
AlphaFold are very small, represented by backbones RMSD lower
than 1�A. Moreover, Pak et al. (2021) also demonstrated that there is
no correlation between AlphaFold accuracy metrics (pLDDT) and
the impact of mutations on protein stability change (ΔΔG), neither
with the side chain size change.

Finally, of AlphaFold2 cannot predict novel structures, since its
algorithm is based on MSA and requires known structures
databases. Another important aspect is that the use of
evolutionary information from larger MSAs, requiring
environmental systems and storage to detect the homology
between known and target sequences, demands a powerful
computing processors and its structure prediction is time
consuming as protein length increases. To overcome this
limitation Google offers the Google Colaboratory, which enables
access to powerful GPUs. One of these solutions is ColabFold, a fast
and easy-to-use software that replaces the AlphaFold2’s homology
by MMseq2 (Mirdita et al., 2022), making the computational
demands less relevant.

4 New methods of protein structure
prediction using protein language
model

Recently, new free modeling methods have been published to
overcome some of the limitations of AlphaFold2, such as the
inability to predict novel structures and the necessity of high
time and computing processes. These methods are based on
protein language models, derived from natural language
processing (NLP), which uses the amino acids sequence only and
is able to learn evolutionary, structural and functional patterns
derived from sequences available in databases, predicting a
structural conformation. The idea behind those methods is that
the amino acids correspond to words/tokens and proteins to
sentences in NLP, assuming that similar semantics come from
amino acids that occur in similar contexts.

There are three approaches used in language models:
autoregressive, bidirectional, and masked. The first takes into
count the previous tokens (amino acids) to predict the
probability of a token, the second considers the previous and
following tokens independently to estimate the probability of a
token, and the last model considers all tokens in a sequence and
replaces each token with a mask token. A synthesis of the recent
advances in protein language modeling and their applications to
protein prediction problems can be found elsewhere (Bepler and
Berger, 2021).

Two methods have gained attention this year. ESMfold,
developed by Lin et al. (2022) uses a masked transformer protein
language model trained in deep information about biological
properties, using 15 billion parameters. Compared with
AlphaFold2, it did not present the same performance, achieving
lower TM-scores (0.68 versus 0.85 using AlphaFold2 on CASP14).
However, when evaluating AlphaFold2 without MSA, using only the

amino acid sequence, ESMFold performed better (0.68 versus
0.37 using AlphaFold2 on Casp14). Moreover, it presented an
accuracy comparable to AlphaFold2 for structures predicted with
high confidence, demonstrating a median all-atom RMSD of 1.91�A
and a backbone RMSD of 1.33�A, reaching similar experimental-level
accuracy. Finally, this approach also demonstrated a significant
improvement in prediction speed, since it does not require the
construction of MSA. Using this approach, the authors presented
the ESM Metagenomic Atlas, where they predicted more than
617 million structures from metagenomic databases, in which
225 million structures were predicted with high confidence,
including those that are novel (Lin et al., 2022).

EMBER2 is a protein language-model developed by Weissenow
et al. (2022a), that uses embeddings to predict inter-residue distance
(2D structure) introducing attention heads derived from a pre-
trained protein language model instead of MSA. Using EMBER2 in
trRosetta to predict 3D structures is less accurate than AlphaFold2 in
predicting a native structure and presents an inferior TM score
(0.5 versus 0.79 in ColabFold) (Yang et al., 2020). However, it is
faster than ColabFold by about 35 fold, similarly to ESMfold. As the
comparison made in this work was not fair, since EMBER2 predicts
2D structures and AlphaFold, 3D structures, the authors developed a
new approach that uses EMBER2 model, but now applied in three-
dimensional structure prediction, named EMBER3D (Weissenow
et al., 2022b). Again, Ember3D did not outperform AlphaFold, but is
much faster than it and ESMFold. Whereas AlphaFold2 do not
perform efficiently in the study of the impact of single amino acids
variants into protein structure, Weissenow et al. (2022b)
demonstrated that the differences in predicted distances maps
generated by EMBER3D correlated well with native and mutant
3D structures from deep mutational scanning, having a better result
than ESMfold. Furthermore, they developed a tool that presents the
difference between native and mutant predicted structures by all
possible amino acid exchanges in each position of a protein
sequence. The similarity between de native amino acid and the
mutated one helps the identification of exchanges that may cause a
high impact on the protein structure.

These new approaches highlight the powerful capacity of
language models to identify evolutionary, structural and
functional patterns from massive protein sequence databases to
solve protein prediction problem, improving prediction speed
and requiring less computational power. It is expected that those
approaches will develop and gain accuracy with the inclusion of
biological knowledge and multi task learning.

5 Conclusion

Three-dimensional protein structure determination is
important to elucidate the protein function, being critical to
understanding biological processes and addressing human health
and life science problems in general. Due to the difficulty of
determining protein structures by experimental methods, their
predictions have been one of the central problems of the
scientific community. The advent of AlphaFold2 and the release
of millions of protein structures predicted with high accuracy and
available in AlphaFold DB allowed an unprecedented expansion of
different research fields in life science, impacting the most biological
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sciences, followed by biochemistry and cell biology, genetics,
medical and health sciences and chemical sciences (Varadi and
Velankar, 2022).

Protein structure prediction can be applied from understanding
the interaction between pathogen and host, how pathogens survive
and reproduce, and why they are resistant to certain drugs used, to
the development of new and more efficient drugs, reducing the cost
in drug discovery and development, as well as the development of
new and improved vaccines (Duran-Frigola et al., 2013; Hazra and
Patra, 2021). The development of a new vaccine strategy used
against COVID-19 by Pfizer, Moderna and Johnson & Johnson,
in which the prediction of the mutations and its potential effects in
spike protein domain allowed the generation of an immunogen,
highlights the window of opportunity that AlphaFold2 offers in the
structure-guided vaccine design (Higgins, 2021).

The recent advances in protein structure prediction have
contributed to improve protein folding issues. The emergence of
AlphaFold2 has taken the problem of protein structure prediction to
another level, reaching similar experimental-level accuracy in some
cases. Nevertheless, improvements are needed to overcome the
limitation to predict novel structures, intrinsically disordered
regions and loops, the ability to predict only a single conformer
without ligands and still present inconsistencies in its models, and
the inability to predict the impact of missense mutation on protein
structure. These limitations, ultimately, are important drawbacks to
expand the use of AlphaFold in life science.

Efforts are in progress to improve AlphaFold performance and
models. Johansson-�Akhe and Wallner (2022) demonstrated that
randomly perturbing the neural network weights, forcing it to
sample more conformational spaces can improve AlphaFold
Multimer performance. Terwilliger et al. (2022) suggested that
inclusion of new experimental information can improve parts of
the models, showing that application of experimental density maps
used iteratively allows the rebuilding of models that can be used as
templates by AlphaFold new prediction. Finally, Hekkelman et al.
(2022) enriched the models in the AlphaFold DB through
transplantation of small molecules and ions based on
homologous protein structures. They presented a new resource,
the AlphaFill databank, to overcome the limitation presented by
AlphaFold models that do not present ligands and co-factors, to help
life scientists test new hypotheses and design target experiments.

Simultaneously, new strategies using protein language models
are arising to compete with AlphaFold2 in terms of performance and
accuracy and to overcome some of its limitations. These strategies,
more specific ESMfold, offers an opportunity to identify new
proteins and novel functions, allowing the identification of new
species, includingmicroorganisms and viruses that endanger human
health, as well as those that offer solution to mitigate environmental
problems, such as the degradation of polluting and the development
of transgenic microorganisms for more efficient product production.
For this, ESM Metagenomic Atlas is an important 3D protein

structures resource to be deeply investigated by the scientific
community (Lin et al., 2022). Finally, the efforts to better predict
how mutations affect protein structure using these new approaches
are essential to gain insights in human genetic disease and further
improve disease management and prediction. Today, these methods
do not outperform AlphaFold2, but with the improvement of deep
language models and the enrichment of these models with biological
information through multi-task learning, they promise to
revolutionize the protein structural biology.
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