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ABSTRACT

We examined whether distinct staphylococcal and 
mammaliicoccal species and strains trigger B- and 
T-lymphocyte proliferation and interleukin (IL)-17A 
and interferon (IFN)-γ production by peripheral blood 
mononuclear cells in nulliparous, primiparous, and 
multiparous dairy cows. Flow cytometry was used to 
measure lymphocyte proliferation with the Ki67 anti-
body, and specific monoclonal antibodies were used to 
identify CD3, CD4, and CD8 T lymphocyte and CD21 
B lymphocyte populations. The supernatant of the 
peripheral blood mononuclear cell culture was used to 
measure IL-17A and IFN-γ production. Two distinct, 
inactivated strains of bovine-associated Staphylococcus 
aureus [one causing a persistent intramammary infec-
tion (IMI) and the other from the nose], 2 inactivated 
Staphylococcus chromogenes strains [one causing an 
IMI and the other from a teat apex), as well as an 
inactivated Mammaliicoccus fleurettii strain originat-
ing from sawdust from a dairy farm, and the mitogens 
concanavalin A and phytohemagglutinin M-form (both 
specifically to measure lymphocyte proliferation) were 
studied. In contrast to the “commensal” Staph. aureus 
strain originating from the nose, the Staph. aureus 
strain causing a persistent IMI triggered proliferation 
of CD4+ and CD8+ subpopulations of T lymphocytes. 
The M. fleurettii strain and the 2 Staph. chromogenes 
strains had no effect on T- or B-cell proliferation. Fur-
thermore, both Staph. aureus and Staph. chromogenes 
strains causing persistent IMI significantly increased 

IL-17A and IFN-γ production by peripheral blood 
mononuclear cells. Overall, multiparous cows tended to 
have a higher B-lymphocyte and a lower T-lymphocyte 
proliferative response than primiparous and nulliparous 
cows. Peripheral blood mononuclear cells of multipa-
rous cows also produced significantly more IL-17A and 
IFN-γ. In contrast to concanavalin A, phytohemagglu-
tinin M-form selectively stimulated T-cell proliferation.
Key words: mastitis, Staphylococcus aureus, non-
aureus staphylococci, Mammaliicoccus, lymphocyte 
proliferation

INTRODUCTION

Staphylococcus and Mammaliicoccus (formerly Staph-
ylococcus; Madhaiyan et al., 2020) species are part of 
the skin microbiota of mammals and have been isolated 
from various body sites of dairy cows and from the dairy 
environment. They are also the most common cause 
of bovine IMI (De Visscher et al., 2016; Leuenberger 
et al., 2019; Wuytack et al., 2019). Among the genus 
Staphylococcus, Staphylococcus aureus is considered a 
major mastitis pathogen that represents a real threat 
to bovine udder health (Rainard et al., 2018). Nonethe-
less, the impact of Staph. aureus markedly depends on 
the genotype, as adapted to a particular host and even 
to a particular body site (Leuenberger et al., 2019).

Bovine non-aureus staphylococci and mammaliicocci 
(NASM) are a heterogeneous group of bacteria that 
cover a broad range of ecological habitats, varying 
from primarily the environment of dairy cows (e.g., 
Mammaliicoccus fleurettii) to the cow’s udder (e.g., 
Staphylococcus chromogenes; De Visscher et al., 2014; 
Vanderhaeghen et al., 2014; De Buck et al., 2021). The 
significance of NASM for bovine udder health has come 
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under attention because of the vast range of species and 
strain-specific differences in virulence and host interac-
tions (Souza et al., 2016, 2022b; Piccart et al., 2016). 
Previous studies regarded NASM as true, yet minor 
mastitis pathogens that can cause both subclinical and 
mild clinical mastitis (Supré et al., 2011; Piessens et 
al., 2012; De Buck et al., 2021) but they usually have 
limited effects on milk SCC and milk quality and often 
no effect on milk yield (Tomazi et al., 2015; Valckenier 
et al., 2020). Others have classified NASM as part of a 
commensal microbiota of the bovine mammary gland 
or teat apices with potential protective effects against 
mastitis caused by major mastitis bacteria (Piepers et 
al., 2010; Isaac et al., 2017; Toledo-Silva et al., 2021a).

There is a gap in our understanding of how distinct 
staphylococcal and mammaliicoccal species and strains 
orchestrate the bovine immune response and the un-
derlying, potentially parity-related mechanisms, in the 
clearance of mastitis pathogens. T and B lymphocytes 
play a central role in cellular and humoral immunity of 
the mammary gland, as they are capable of eliminat-
ing pathogens through direct cytotoxicity, producing 
antibodies and cytokines, activating macrophages, or 
recruiting neutrophils. For instance, lymphocytes pro-
duce critical cytokines such as IL-17A and IFN-γ that 
promote the defense of the bovine mammary gland (Ez-
zat Alnakip et al., 2014; Rainard et al., 2020).

Thus, we investigated (1) the in vitro blood-derived 
B- and T-lymphocyte proliferative responses, and (2) 
the production of IL-17A and IFN-γ by peripheral 
blood mononuclear cells (PBMC) stimulated by dis-
tinct staphylococcal and mammaliicoccal strains in 
nulliparous, primiparous, and multiparous dairy cows.

MATERIALS AND METHODS

This study was approved by the Animal Research 
Ethics Committee of the Faculty of Veterinary Medi-
cine and Animal Science, University of São Paulo, Bra-
zil (protocol number: 8609270815).

Bacterial Strains and Growth Conditions

In the study, we used 2 distinct strains of Staph. au-
reus (Supplemental Table S1, https:​/​/​doi​.org/​10​.5281/​
zenodo​.7215435; Souza et al., 2022a), the first isolated 
from a persistent subclinical IMI (spa type t605; Cunha 
et al., 2020; Santos et al., 2020) and the other isolated 
from a nose (spa type t089; Santos et al., 2020). The 
same NASM strains (Supplemental Table S1) as we 
used previously (Breyne et al., 2015; Piccart et al., 
2016; Souza et al., 2016; Toledo-Silva et al., 2021a,b, 
2022) were included in the present experiments: 2 dis-

similar Staph. chromogenes strains (“IM” and “TA”) 
and 1 strain of Mammaliicoccus fleurettii (MF). The 
Staph. chromogenes “TA” isolate was cultured from a 
heifer’s teat apex and has in vitro inhibitory effects 
against Staph. aureus, Streptococcus uberis, and Strep-
tococcus dysgalactiae (“C2” in De Vliegher et al., 2004), 
whereas the other Staph. chromogenes strain (“IM”; 
multilocus sequence type 1, “Chromo-MAS” in Huebner 
et al., 2021) originated from a persistent IMI (Supré et 
al., 2011) capable of colonizing quarters of dry quarters 
(Beuckelaere et al., 2021). The so-called environmental 
MF strain was isolated from sawdust on a dairy farm 
(Piessens et al., 2011).

The bacterial isolates were kept at −80°C and then 
thawed at 37°C and cultivated on 5% sheep blood agar 
at the start of the experiments. Subsequently, fresh 
colonies from each isolate were grown overnight in 37°C 
brain-heart infusion (BHI) broth. Afterward, all iso-
lated were diluted 1:1,000 in new BHI broth and culti-
vated until late exponential growth. Then, the bacterial 
broth was centrifuged and washed twice with sterile 
saline solution (0.9% NaCl). The isolates were then 
resuspended in RPMI-1640 (R7638, Sigma-Aldrich). 
Using 10-fold serial dilutions, 10 µL of each diluted 
isolate sample was poured onto BHI agar until live bac-
teria were counted reliably to determine the number of 
colony-forming units. After 60 min at 60°C, the bacte-
ria were heat-killed, and inactivation was confirmed by 
pouring 100 µL of each bacterial inoculum on 5% sheep 
blood agar (Souza et al., 2016), which was validated by 
the absence of bacterial growth.

Dairy Cows and Sampling. Peripheral blood 
samples (approximately 40 mL per cow) were taken 
aseptically in heparin tubes from 18 clinically healthy 
Holstein cows and heifers at the dairy farm of the Uni-
versity of São Paulo (Pirassununga, Brazil). These ani-
mals were divided as follows: 6 nulliparous (age: 17.65 
+ 0.36 mo; BW: 434.2 + 20.71 kg), 6 mid-lactating pri-
miparous (age: 33.16 + 2.85 mo; BW: 599.7 + 13.04 kg; 
milk yield: 24.58 + 0.70 kg; DIM: 156.8 + 15.48 d; milk 
SCC: 79,820 + 16,460 cells mL−1), and 6 mid-lactating 
multiparous (age: 58.64 + 4.63 mo; BW: 685.7 + 15.01 
kg; milk yield: 31.58 + 1.88 kg; DIM: 141.2 + 10.31 
d; milk SCC: 91,000 + 24,490 cells mL−1; parity: 2.83 
+ 0.54) dairy cows. Subsequently, the blood samples 
were coded and randomized, and further analyses were 
carried out in which the researcher was blinded to the 
animal parity of the animals from which the samples 
was collected.

Isolation of PBMC. For lymphocyte prolifera-
tion, the PBMC were isolated using Ficoll-Paque Plus 
(density gradient 1.077 g mL−1; cat. no. 17-1440-03, 
GE Healthcare) following the manufacturer’s instruc-
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tions. The PBMC were then placed in 1 mL of pro-
liferation medium composed of RPMI-1640 nutrition 
medium (R7638, Sigma-Aldrich) supplemented with 
10% heat-inactivated fetal calf serum (FCS; F9665, 
Sigma-Aldrich), 5 × 10−2 mM 2-mercaptoethanol (cat. 
no. 21985-023, Invitrogen), GlutaMAX supplement 
(cat. no. 35050-061, GIBCO/Life Technologies), and 
antibiotic-antimycotic solution (cat. no. 15240-062, Life 
Technologies). Cell viability was determined by trypan 
blue exclusion (cat. no. T8154, Sigma-Aldrich), which 
was always >98%, and PBMC were counted in a Neu-
bauer chamber and their concentration was adjusted to 
2.2 × 106 viable cells mL−1.

PBMC Culture. The PBMC (2 × 105 cells per 
well) were cultured in triplicate wells of 96-well culture 
plates for 72 h at 37°C in a 5% CO2 incubator in the 
presence of different potential mitogens: (1) concana-
valin A type IV-S (Con-A, C0412, Sigma-Aldrich; 10 
µg mL−1), (2) phytohemagglutinin M-form (PHA-M, 
cat. no. 10576015, GIBCO/Life Technologies) with (3) 
the 5 heat-killed staphylococcal and mammaliicoccal 
strains (multiplicity of infection = 10; Alekseeva et al., 
2013; Santos et al., 2021), or (4) without stimuli (base-
line, unstimulated control cells), respectively. After 72 
h, the cells were harvest and centrifuged at 250 × g for 
8 min at room temperature, and the supernatant were 
collected and stored at −80°C for further processing 
for measurement of cytokines (i.e., IFN-γ and IL-I7-A).

Proliferation Measurement and Identification 
of Lymphocyte Subpopulations. After PBMC cul-
ture, the cells were centrifuged at 250 × g for 8 min. 
Then, the cells were resuspended in 100 μL of PBS 
supplemented with 1% (vol/vol) heat-inactivated FCS 
and incubated for 30 min with a mix of the following 
primary mAb: CD3, CD4, CD8, and CD21. The follow-
ing combinations of primary mAb against bovine lym-
phocytes were used: (1) mouse IgG1 anti-bovine CD3 
(BOV2009; T lymphocytes, Washington State Univer-
sity), (2) mouse IgG2a anti-bovine CD4 (BOV2010; 
Washington State University), and (3) mouse anti-
bovine CD8 conjugated with phycoerythrin (cat. no. 
MCA837, Bio-Rad); and (4) mouse anti-bovine CD21 
conjugated with phycoerythrin (B lymphocytes; cat. 
no. MCA1424, Bio-Rad). After incubation, 1 mL of 
PBS was added to the cell suspensions and centrifuged 
at 250 × g for 8 min. Then, cells were incubated for 30 
min with the labeled secondary antibodies (Abs) resus-
pended in PBS with 1% (vol/vol) FCS. The following 
secondary Abs were used: (1) goat anti-mouse IgG1 
conjugated with allophycocyanin (cat. no. A10541, In-
vitrogen) and (2) goat anti-mouse IgG2a conjugated 
with Brilliant violet 421 (BD Horizon). After incuba-

tion, 1 mL of PBS was added to the cell suspension 
and centrifuged at 250 × g for 8 min. Afterward, the 
cells were fixed with paraformaldehyde and permeabi-
lized using a permeabilization solution (0.1% saponin 
in PBS with 1% FCS and 0.09% sodium azide). Then, 
the samples were incubated for 1 h at 4°C with 10 μL 
of anti-Ki67 antibody (diluted 1/100 in PBS with 1% 
FCS and 0.09% sodium azide; cat. no. ab15580, Ab-
cam) to quantify lymphocyte proliferation (Soares et 
al., 2010; Lašťovička et al., 2016; Santos et al., 2021). 
After incubation, 1 mL of permeabilization solution 
was added to the cell suspension and centrifuged at 250 
× g for 8 min. Next, the cells were incubated for 30 min 
with goat anti-rabbit IgG conjugated with fluorescein 
isothiocyanate (1/100 in PBS with 1% FCS and 0.09% 
sodium azide; cat. no. ab6717, Abcam). Finally, 1 mL of 
permeabilization solution was added to the cell suspen-
sion and centrifuged at 250 × g for 8 min resuspended 
in PBS with 1% (vol/vol) FCS, and resuspended in 300 
µL of PBS and analyzed by flow cytometry (BD FACS 
Aria II, Becton Dickinson Immunocytometry System). 
Here, 20,000 cells, excluding most of the cellular debris, 
were analyzed. An unstained control and single-stained 
samples were also prepared as compensation controls. 
Negative control samples were stained with conjugated 
isotype control Abs. In addition, cells were stained 
with fluorescence minus one (FMO) controls. Doublets 
were excluded using forward scatter (FSC) area versus 
FSC height. Our gating strategy analysis for B- and 
T-lymphocyte subsets is illustrated in Figure 1; the 
obtained data (percentage of ki67+ cells) were analyzed 
with FlowJo software (TreeStar Inc.).

IL-17A and IFN-γ Quantification. Quantifica-
tion of IL-17A (DIY0673B-003, Kingfisher Biotech 
Inc.) and IFN-γ (KBC1231, ThermoFisher Scientific 
Inc.) from the supernatant of the cell cultures was per-
formed using commercial bovine ELISA kits, using the 
protocol supplied by the manufacturers.

Statistical Analysis

Statistical analysis was performed using GraphPad 
Prism 9.4 (GraphPad Software Inc.). First, the outcome 
variables were tested for normality of the distribution 
using the Shapiro-Wilk test. Normally distributed data 
were subjected to 2-way ANOVA followed by Tukey’s 
test (concentrations of IFN-γ). Outcome variables that 
were not normally distributed (CD3+, CD4+, CD8+ 
T-lymphocyte and CD21+ B-lymphocyte prolifera-
tion; IL-17A) were analyzed using the Kruskal-Wallis 
test followed by the Student-Newman-Keuls test. The 
interaction terms between parity and the stimuli (in-
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Figure 1. Successive gating scheme for identifying the CD3+ T-lymphocyte subset. First, most debris was excluded (A). Subsequently, dou-
blets were excluded using forward scatter area (FSC-A) versus FSC height (FSC-H; B). Then, CD3+ lymphocytes were analyzed based on their 
cytoplasmic granularity and mean fluorescence intensity following a 2-step fluorescent immunolabeling protocol using primary anti-bovine mAb 
specific for T-cell identification (CD3) and secondary Abs coupled to long-wavelength fluorescent probe (APC). The recordings of the side angle 
light scatter (SSC-H) and fluorescent properties (APC) for CD3+-gated cells (T lymphocytes) were determined (C). Then, the T-lymphocyte 
subsets were divided according to their expression of CD8 (phycoerythrin, PE) and CD4 (Brilliant violet 421, BV421) molecules (D). Finally, 
the expression of Ki-67 was quantified in unstimulated (E) and stimulated (F; concanavalin A type IV) samples. An unstained control and 
single-stained samples were also prepared as compensation controls. Negative control samples were also stained with conjugated isotype control 
antibodies. In addition, cells were stained with fluorescence minus one (FMO) controls. SSC-A = side scatter area.
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activated isolates and Con-A and PHA-M) were never 
significant. P ≤ 0.05 was considered significant.

RESULTS

T-Lymphocyte Proliferation

In the present study, PHA-M behaved as a specific 
mitogen for T lymphocytes (CD3+), whereas Con-A was 
mitogenic for both T (CD3+) and B (CD21+) lympho-
cytes. The CD3+, CD4+, and CD8+ T-lymphocyte pro-
liferation stimulated with Con-A, PHA-M, and Staph. 
aureus isolated from a persistent IMI was higher than 
under the baseline condition (no stimulus, control; Fig-
ures 2, 3, and 4). No significant difference was observed 
in CD3+, CD4+, or CD8+ T-lymphocyte proliferation 
between the other staphylococcal and mammaliicoccal 
species and strains and the basal control (Figures 2, 3, 
and 4).

The overall proliferative response of CD3+ CD4+, 
and CD8+ T-lymphocyte subsets were higher in pri-
miparous and nulliparous cows than in multiparous 
cows (Figures 2, 3, and 4).

B-Lymphocyte Proliferation

In the present study, Con-A was the only stimulus 
that led to greater B-cell proliferation (Figure 5). 
Multiparous cows had a higher B-lymphoproliferative 
response than primiparous (P < 0.0001) and nullipa-
rous (P = 0.0007) dairy cows. Furthermore, nulliparous 
dairy cows had higher B-lymphocyte proliferation than 
primiparous cows (P < 0.0001).

IL-17A and IFN-γ Production

Production of IL-17A by lymphocytes was higher 
under Staph. aureus originating from a persistent IMI 
and Staph. chromogenes IM (Figure 6) compared with 
the unstimulated values. Higher levels of IL-17A were 
found in multiparous cows than in primiparous (P 
= 0.016) and nulliparous (P = 0.0007) cows, for all 
stimuli (Figure 6).

Production of IFN-γ by lymphocytes was higher 
than that of unstimulated control when stimulated 
with Staph. aureus originating from an IMI and Staph. 
chromogenes IM (Figure 7). Higher levels of IFN-γ were 
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Figure 2. Blood T-lymphocyte (CD3+) proliferation (median with interquartile range) after incubation of peripheral blood mononuclear cells 
with medium only (unstimulated basal), the mitogens concanavalin A (Con-A) and phytohemagglutinin M-form (PHA-M), and distinct staphy-
lococcal and mammaliicoccal strains in nulliparous (n = 6), primiparous (n = 6), and multiparous (n = 6) dairy cows. SA IMI = Staphylococcus 
aureus isolated from a persistent IMI; SA Nose = Staph. aureus isolated from a nose; SC “IM” = Staphylococcus chromogenes isolated from a 
persistent IMI; SC “TA” = Staph. chromogenes isolated from the teat apex; and MF = Mammaliicoccus fleurettii (MF) isolated from sawdust. 
ki67+ indicates positive staining for Ki67 antibody. *P < 0.05.
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found in multiparous cows than in nulliparous (P = 
0.002) and primiparous (P = 0.075) cows, for all stimuli.

DISCUSSION

In vitro lymphocyte proliferation in response to 
antigen-specific or nonspecific stimulation is a widely 
used approach to test for immunological memory and 
general immune function. During a proper immune 
response, lymphocyte proliferation is the first step 
toward the development of effector and memory lym-
phocytes, both of which are necessary to eliminate a 
current antigen and ensure that future responses to an 
antigen are faster and stronger than the first encounter 
with the antigen (Desforges et al., 2016). In the pres-
ent study, we evaluated blood lymphocyte proliferation 
using Ki67 expression because it showed comparable 
results to lymphocyte proliferation evaluated using car-
boxyfluorescein succinimidyl ester but was more robust 
and sensitive (Lašťovička et al., 2016). Apart from one 
study that investigated the mitogen-induced blood T-
lymphocyte proliferative capacity in primiparous and 
multiparous dairy cows (Mehrzad and Zhao, 2008), no 

study has investigated B- and T-lymphoproliferative 
responses using distinct staphylococcal and mammali-
icoccal strains.

Interactions between distinct staphylococcal and 
mammaliicoccal species and strains and dairy cows’ 
mammary gland immunity remain widely uncharac-
terized, although these interactions could dictate the 
course of the disease. Here, we found a marked varia-
tion in T-lymphocyte proliferation between inactivated 
Staph. aureus originating from a persistent IMI, a true 
major mastitis pathogen, and a “commensal” Staph. au-
reus strain originating from the nose. In agreement with 
our results, previous studies have shown that the im-
mune response to Staph. aureus is genotype-dependent 
(Pereyra et al., 2017; Murphy et al., 2019; Niedziela et 
al., 2021). In fact, the IMI-associated Staph. aureus was 
the only isolate that induced proliferation of T lympho-
cytes, including the CD4+ and CD8+ subpopulations.

It is conceivable that the ancient co-evolution of hun-
dreds of microorganisms and the host immune system 
will lead to the development of sophisticated immune 
controls that can distinguish between pathogenic bacte-
ria and beneficial commensal microorganisms (Sriniva-
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Figure 3. Blood T-lymphocyte (CD4+) proliferation (median with interquartile range) after incubation of peripheral blood mononuclear 
cells with medium only (unstimulated basal), the mitogens concanavalin A (Con-A) and phytohemagglutinin M-form (PHA-M) and distinct 
staphylococci species and strains in nulliparous (n = 6), primiparous (n = 6), and multiparous (n = 6) dairy cows. SA IMI = Staphylococcus 
aureus isolated from a persistent IMI; SA Nose = Staph. aureus isolated from a nose; SC “IM” = Staphylococcus chromogenes isolated from a 
persistent IMI; SC “TA” = Staph. chromogenes isolated from the teat apex; and MF = Mammaliicoccus fleurettii (MF) isolated from sawdust. 
ki67+ indicates positive staining for Ki67 antibody. *P < 0.05.
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san, 2010; Littman and Pamer, 2011). In this scenario, 
it is widely accepted that commensal bacteria build up 
mechanisms to maintain immunological tolerance, such 
as by sustaining regulatory T lymphocytes (Littman 
and Pamer, 2011). For instance, levels of T regulatory 
cells coincide with Staphylococcus epidermidis skin colo-
nization in humans (Parlet et al., 2019; Lunjani et al., 
2021). In this context, there is growing evidence that a 
core bovine mammary gland microbiome exists, in which 
staphylococci emerge as a protagonist (Porcellato et al., 
2020). Thus, we speculate that the commensal Staph. 
aureus strain and the NASM, also potentially assigned 
as commensals, could endow immunological tolerance. 
In contrast to the IMI-associated Staph. aureus, they 
promote commensal-specific regulatory T lymphocytes 
that, in response, suppress T-lymphocyte proliferation 
(Dowling et al., 2018). Indeed, the 3 NASM strains in-
cluded in this work induced only minimal or nondetect-
able levels of IL-1β, IL-8, and tumor necrosis factor-α 
in milk after an experimental challenge in dairy heifers 
(Piccart et al., 2016).

The supernatant of the Staph. aureus strain origi-
nating from a persistent IMI had higher levels of IL-

17A and IFN-γ. In line with our findings, Zielinski et 
al. (2012) found that T lymphocytes stimulated with 
inactivated Staph. aureus in humans predominantly 
foster T helper (TH)1 and TH17 lymphocyte subsets, 
and, to a lesser extent, TH2 lymphocytes. Furthermore, 
Tebartz et al. (2015) showed that T lymphocytes pro-
liferated vigorously when exposed to Staph. aureus ex 
vivo during acute infection. However, this response was 
abolished in the chronic phase, mainly due to myeloid-
derived suppressor cells with a minor contribution from 
regulatory T lymphocytes. This response exerts a solid 
immunosuppressive effect in the later T-lymphocyte 
response, which endows the chronic infection status.

Apart from the 4 NASM strains, the Staph. chromo-
genes IM strain induced substantial production of IL-
17A and IFN-γ, comparable to the Staph. aureus strain 
originating from the persistent IMI. In agreement with 
our findings, Beuckelaere et al. (2021) showed that 
quarters inoculated with and colonized by this particu-
lar IM strain resulted in higher concentrations of IFN-γ 
during the dry period and early lactation in dairy 
cows. We hypothesize that the signature cytokines trig-
gered by this strain could reinforce bovine mammary 
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Figure 4. Blood T-lymphocyte (CD8+) proliferation (median with interquartile range) after incubation of peripheral blood mononuclear 
cells with medium only (unstimulated basal), the mitogens concanavalin A (Con-A) and phytohemagglutinin M-form (PHA-M) and distinct 
staphylococci species and strains in nulliparous (n = 6), primiparous (n = 6), and multiparous (n = 6) dairy cows. SA IMI = Staphylococcus 
aureus isolated from a persistent IMI; SA Nose = Staph. aureus isolated from a nose; SC “IM” = Staphylococcus chromogenes isolated from a 
persistent IMI; SC “TA” = Staph. chromogenes isolated from the teat apex; and MF = Mammaliicoccus fleurettii (MF) isolated from sawdust. 
ki67+ indicates positive staining for Ki67 antibody. *P < 0.05.
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gland defenses through immune training. The type 3 
immunity is actually associated with IL-17A, which 
is marked by the recruitment of neutrophils, antigen-
specific neutrophilic inflammation, and antimicrobial 
defenses triggered on the epithelial layer (Rainard et 
al., 2020). On the other hand, type 1 immunity is 
associated with IFN-γ, which induces cell-mediated 
immunity and activates phagocytes, improving their 
phagocytic and bactericidal activities (Ezzat Alnakip 
et al., 2014). Nonetheless, further longitudinal studies 
are needed to investigate whether (1) quarters colonized 
with the Staph. chromogenes IM strain sustain a mam-
mary gland protective immunity by in vivo production 
of IFN-γ and especially IL-17A, or (2) myeloid-derived 
suppressor cells or regulatory T lymphocytes will over-
ride such a positive effect with negative implications of 
udder health (as is true for Staph. aureus).

In the current study, a lower T-lymphocyte prolifera-
tive capacity and a higher B-cell response was seen in 
multiparous dairy cows than in younger counterparts. 
In line with our findings, Mehrzad and Zhao (2008) 
reported that the proliferation of overall blood lym-
phocytes stimulated with Con-A, which they regarded 

as specific to T lymphocytes, was lower in multipa-
rous than in primiparous dairy cows. Thus, we can 
hypothesize that immunosenescence could explain the 
differences between multiparous dairy cows and their 
younger counterparts and may reflect the capacity of 
the T lymphocytes to respond to stimuli, pathogens, 
and commensals. Furthermore, no difference in T-
lymphocyte proliferation was identified between nul-
liparous (but nonlactating) and primiparous (lactating) 
dairy cows, indicating that lactation did not affect the 
T-proliferative responses of young dairy cows. Similar 
to our findings, Mehrzad and Zhao (2008) reported 
that primiparous dairy cows responded less to LPS, 
assumed to be a B-cell-specific mitogen. This could 
be attributed to the presence of primed and activated 
B lymphocytes in multiparous cows, which have been 
significantly more exposed to antigens over the course 
of their lifetime (Mehrzad and Zhao, 2008).

In addition, multiparous cows are prone to have a 
TH17 and TH1 response, which could explain, at least 
in part, why these animals have a lower incidence of 
clinical mastitis during early lactation than primiparous 
cows (De Vliegher et al., 2012), as bovine mammary 
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Figure 5. Blood B-lymphocyte (CD21+) proliferation (median with interquartile range) after incubation of peripheral blood mononuclear 
cells with medium only (unstimulated basal), the mitogens concanavalin A (Con-A) and phytohemagglutinin M-form (PHA-M) and distinct 
staphylococci species and strains in nulliparous (n = 6), primiparous (n = 6), and multiparous (n = 6) dairy cows. SA IMI = Staphylococcus 
aureus isolated from a persistent IMI; SA Nose = Staph. aureus isolated from a nose; SC “IM” = Staphylococcus chromogenes isolated from a 
persistent IMI; SC “TA” = Staph. chromogenes isolated from the teat apex; and MF = Mammaliicoccus fleurettii (MF) isolated from sawdust. 
ki67+ indicates positive staining for Ki67 antibody. *P < 0.05.
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gland defense relies mainly on neutrophils and epithe-
lial cells (Rainard et al., 2020). On the other hand, 
this neutrophilic and proinflammatory response may 
predispose multiparous cows to systemic rather than 
local clinical mastitis cases compared with primiparous 
dairy cows, as previously described (Van Werven et 
al., 1997; Mehrzad et al., 2009). Similar to our results, 
Ohtsuka et al. (2010) showed that the ratio of IFN-γ to 
IL-4 was significantly lower in colostrum mononuclear 
cells from primiparous cows than in third-calving dairy 
cows. Nevertheless, the IFN-γ and IL-17A concentra-
tions in our samples were relatively low, so caution is 
warranted when interpreting our findings.

Although Con-A has been extensively used as a selec-
tive T-cell mitogen in human (Palacios, 1982; Weiss 
et al., 1987) and murine (Kanellopoulos et al., 1985) 
lymphocyte proliferative studies, we demonstrated that 
Con-A did not behave as a selective T-cell mitogen in 
dairy cows, as initially presumed (Mehrzad and Zhao, 
2008; Erskine et al., 2011; Nieto Farias et al., 2018). 
Nonetheless, our studies confirmed that PHA-M is a 
mitogen that only affects T lymphocytes (Kanellopou-
los et al., 1985).

CONCLUSIONS

In this study, we demonstrated a notable difference 
in blood T-lymphocyte proliferation among a patho-
genic Staph. aureus strain, a “commensal” Staph. aureus 
strain, and well-studied NASM strains. This provides us 
with new insights into the complex host-staphylococcal 
and mammaliicoccal species and strain relationships. 
The data generated on the Staph. chromogenes IM 
strain support the hypothesis of a protective bovine 
mammary gland immune response. Beyond that, par-
ity has a significant effect on T- and B-lymphocyte 
proliferation, in addition to the production of critical 
cytokines. Finally, we demonstrated that PHA-M is 
more appropriate as a selective mitogen for bovine T 
lymphocytes than the commonly used Con-A.
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