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We propose a parsimonious, yet effective, susceptible–exposed–
infected–removed-type model that incorporates the time
change in the transmission and death rates. The model is
calibrated by Tikhonov-type regularization from official
reports from New York City (NYC), Chicago, the State of
São Paulo, in Brazil and British Columbia, in Canada. To
forecast, we propose different ways to extend the transmission
parameter, considering its estimated values. The forecast
accuracy is then evaluated using real data from the above
referred places. All the techniques accurately provided forecast
scenarios for periods 15 days long. One of the models
effectively predicted the magnitude of the four waves of
infections in NYC, including the one caused by the Omicron
variant for periods of 45 days using out-of-sample data.
1. Introduction
Since the seminal work of Kermack & McKendrick [1], susceptible–
infected–removed-type and susceptible–exposed–infected–removed-
type (SEIR-type) models have played a crucial role in understanding
the dynamics of infectious diseases through nowcasting and helping
public health authorities to address disease outbreaks by forecasting
[2]. In the pandemic of COVID-19, that started in the end of 2019
and was still ongoing in the beginning of 2022, SEIR-type models
were again recurrently used to nowcast the SARS-CoV-2 spread
dynamics and to forecasting [3–12].
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Two of the main challenges the COVID-19 pandemic posed in the modelling of infectious diseases
were to provide accurate nowcast and forecasts [9,13,14]. Nowcasting is fundamental to
understanding the seriousness of the present situation based on the observed reports of infections and
deaths, as well as the hospital capacity. Forecasting is the main tool used to inform how much
intervention will be needed in the future to control or contain the pathogen spread. Thus, to address
both tasks, it is necessary to access good quality data and to design accurate models that incorporate
the time evolution of the transmission pattern as well as the disease severity. Moreover, it is necessary
to use model calibration techniques that incorporate the uncertainties in data acquisition.

The way a pathogen spreads changes with time since it can be affected, for example, by the adoption
of spread control measures and changes in the pathogen (e.g. mutation). However, the way such changes
in the pathogen occur is in general unknown and hard to predict. In other words, transmission can be
defined as a stochastic process. Thus, to design trustworthy and accurate scenarios, a model must
incorporate such variability and randomness. Moreover, based on the past information, the model
must be able to predict the future pattern of transmission, presenting realistic potential numbers of
infections and deaths. A model that fails to address the latter appropriately can, for example, give
arguments to make the public opinion skeptical about or even to deny the severity of an emerging
disease. This seemed to be an important issue in the beginning of the COVID-19 pandemic when a
series of predictions made with over-simplistic models and calibrated with poor data provided
unrealistic catastrophic scenarios [13,15]. During secondary outbreaks, the implementation of non-
pharmaceutical contention measures became more difficult and anti-lockdown protests emerged
worldwide [16–18].

Due to these issues in model predictions, forecast accuracy was recurrently discussed during the
COVID-19 pandemic. For example, Ioannidis et al. [13] recalls a series of unrealistic scenarios designed
in the beginning of the pandemic and proposed some ways to improve model forecast. Gnanvi et al.
[19] made a systematic review of models used to predict scenarios of infections and deaths related to
COVID-19. They classified their results by comparing predictions with reports and found that reports
were inside the 95% confidence intervals (CIs) of 75% of the considered models. Other works,
proposed to refine the modelling of the dynamics of COVID-19 by incorporating, for example, the
spatial distribution of infections, mobility information and different levels of disease severity
depending on age and sex [3,10,20–23].

To address the issues raised above, the present article proposes a methodology to appropriately
model, calibrate and forecast scenarios using SEIR-type models. More precisely, we show that
even simpler SEIR-type models with appropriately calibrated time-dependent transmission
parameters are still suitable to forecast scenarios accurately. Moreover, we compare the results of a
series of techniques used to define the future pattern of transmission based on past information.
All the results are based on real data from Chicago, New York City (NYC), the Canadian
province of British Columbia and the Brazilian state of São Paulo. Some of the techniques were able
to predict accurately four large outbreaks in NYC, including those caused by the Delta and
Omicron variants of the SARS-CoV-2 using out-of-sample data. Another implication of the numerical
results is that considering the pathogen transmission as a stochastic process can lead to more
accurate scenarios.
2. Methods
As pointed in a series of recent works [3,5,24,25], the estimated values of the transmission
parameter usually denoted by β change with time and presents some sort of randomness. To
make accurate predictions, such variability must be incorporated into the model. Thus, the techniques
proposed in what follows are designed to accurately predict the future pattern of transmission
by accounting for past calibrated values of the time-dependent β. It is worth mentioning that
using time-dependent transmission parameters also allows a remarkable adherence to reported
data [3,5,24,25].
2.1. Describing the disease spread dynamics
To describe the spread dynamics of the virus SARS-CoV-2, we consider a SEIR-type model that, for
simplicity, does not consider natural deaths and births. The model accounts for the following five
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compartments, susceptible (S), exposed (E), infected (I), recovered (R) and deceased (D). The progress
between the compartments is defined by the dynamical system of ordinary differential equations
below [26]:

dS
dt

¼ �bðtÞSI, ð2:1Þ

dE
dt

¼ bðtÞSI � sE, ð2:2Þ

dI
dt

¼ sE� ðgðtÞ þ dðtÞÞI, ð2:3Þ

dR
dt

¼ gðtÞI ð2:4Þ

and
dD
dt

¼ dðtÞI: ð2:5Þ

The time-dependent transmission parameter is denoted by β(t) and the infection to onset mean time is
represented by 1/σ, which is set to 5.1 days [27]. The quantity γ denotes the recovery rate and δ(t) is
the death rate. Following Grasselli et al. [28], we set g ¼ 1=14 days�1. For each day t, the death rate
δ(t) is defined as follows, it is the total number of registered deaths on day t divided by the number
of reported infections on the day t− 12. So it is dimensionless. The 12 days is the mean time that
someone takes from being infected to die by COVID-19 [3,24,25].

Natural death and birth could be included in the model, but such terms would make little difference
in the analysis that follows, as the time interval considered here is small. So, to keep the model as simple
as possible, we decided to not include such terms.
2.2. Model calibration
The estimation of the transmission parameter β from daily reports of COVID-19 infections is performed
by the minimization of the Tikhonov-type functional below for each day t, as in [3]:

FðbðtÞÞ ¼ IREPðtÞ logðVðtÞÞ �VðtÞ � log (IREPðtÞ!)þ a(bðtÞ � bðt� 1Þ)2, ð2:6Þ

where α is the regularization parameter, which has dimension days2, to make the second term in the
right-hand side of equation (2.6) dimensionless, and IREPðtÞ denotes the reported COVID-19 infections
on the day t. The term logðIREPðtÞ!Þ is approximated by the Stirling’s formula:

log (IREPðtÞ!) � 1
2
log (2pIREPðtÞ)þ IREPðtÞ log (IREPðtÞ)� IREPðtÞ:

The quantity VðtÞ ¼ Ð t
t�1 sEðsÞds in equation (2.6) represents the model predicted infections for the day t.

It depends on β, since it is part of the solution of the system of equations in equations (2.1)–(2.5).
Therefore, the β(t) that minimizes equation (2.6) is the value that makes the model to predict correctly
the infections reported in the day t. The first part of the functional in equation (2.6) accounts for the
discrepancy between the model predictions and the reports of infections. The second part penalizes
the first to avoid overfitting, by imposing that the discrepancy between β(t) and the already known
value β(t− 1) must also be minimized. To avoid the introduction of bias in the calibration process, the
parameter α must be appropriately chosen. In the present set of examples, we set α = 10−3/2
accordingly to an a posteriori rule [29].
2.3. Model forecast techniques
The transmission parameter β, as we shall see, changes with time, presenting an uncertain pattern. Since
we do not have any formulation to predict how β changes with time, we propose five different techniques
to evaluate future values of β allowing the SEIR-type model to make predictions.
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2.3.1. Average method (AM)

The simplest technique to extend β by setting its future values as the average of its estimated values. More
precisely, for any t > tn, set bðtÞ ¼ b, where

b ¼ bðtnÞ þ bðtn�1Þ þ � � � þ bðtn�mþ1Þ
m

,

tn−m+1,…, tn are time values where β is calibrated, and m < n.
Since the trend of β at the end of the dataset is the most relevant information to predict the number of

infections in the following days, we set m = 5 days. If m is large, it is possible to corrupt predictions with
outdated information. Moreover, keeping the number of unknowns considerably smaller than the size of
‘observed’ quantities can help to reduce the effect of noise in the predictions.

2.3.2. Linear regression (LR)

Another simple technique to extend β is to fit a linear model. In other words, for any t > tn, we set β(t) =
a · t + b, with the scalar parameters a and b fitted to the set of calibrated values of β {β(tn−m+1), β(tn−m+2),…,
β(tn)}. The calibration is performed by least squares.

In this case, since there are two unknowns, we set m = 10 days also to avoid outdated information and
to keep the number of unknowns considerably smaller than the number of observations.

2.3.3. Truncated Fourier series

A more elaborated technique is to calibrate a truncated Fourier series (TFS) [30] that approximates a
dataset. More precisely, assume that β can be approximated by a TFS in the time interval [tn−m+1, tn],

bðtÞ � a0 þ
XN
j¼1

aj cos
2pjt
m

� �
þ bj sin

2pjt
m

� �� �
: ð2:7Þ

For m and N fixed, the parameters a0, aj and bj ( j = 1,…, N), which have the same dimension of β, are
calibrated by least squares from the dataset {β(tn−m+1), β(tn−m+2),…, β(tn)}. Thus, for each time t > tn,
β(t) is given by the periodic function defined in equation (2.7) with calibrated parameters.

In this case, choosing the length of the time interval where the series is defined and the number of
terms in the series is tricky. After testing different values and configurations, we found that setting
the length of the time interval m = 30 days and the number of terms in the series N = 3 gives a
computational affordable technique that fits well the data.

2.3.4. Truncated Fourier series with noise (TFSWN)

In order to add some uncertainty to the predicted values of β, we add to the TFS described above a
Gaussian noise with mean zero and standard deviation given as follows:

(i) Evaluate the difference between the values given by the TFS and the dataset {β(tn−m+1), β(tn−m+2),
…, β(tn)}.

(ii) Evaluate the empirical standard deviation of the difference.

For each time t > tn, β(t) is given by the function in equation (2.7) plus a Gaussian random variable with
mean zero and standard deviation given as above. In this case, we use the same values for m and N, as
well as the parameters of the TFS inequation (2.7) found for the noiseless case.

2.3.5. A mean-reverting model for the transmission parameter

As an alternative to the methods described above, we propose a mean-reverting (MR) model for the
dynamics of β. Since the time evolution of β seems to return to mean values, after random changes, it
is natural to test such a model. So, inspired by the volatility of the Heston model [31] from
Quantitative Finance, we assume that, for t > tn, the values of β(t) are given by the following stochastic
process

~bðtÞ ¼ bð0Þ þ k

ðt
0
ðu� ~bðsÞÞdsþ j

ðt
0

ffiffiffiffiffiffiffiffiffi
~bðsÞ

q
dWðsÞ, ð2:8Þ
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where {W(s) : s > 0} represents the Wiener process also known as Brownian motion. Thus, set
~bð0Þ ¼ bðtnÞ, and bðtÞ ¼ ~bðt� tnÞ.

Based on the Euler–Maruyama scheme to solve the stochastic differential equation in equation (2.8),
we have,

~b jþ1 ¼ ~b j þ kðu� ~b jÞDtþ j
ffiffiffiffiffi
~b j

q
1, ð2:9Þ

where ɛ has Gaussian distribution with mean zero and variance Δt.
Since the estimated values for β are given daily, we set Δt = 1/365. The parameters κ, θ and ξ are

obtained from the set of estimated values for β, {β(tn−m+1), β(tn−m+2),…, β(tn)}, by minimizing the
functional

f ðk, u, jÞ ¼
Xm
j¼1

[bðtn�jþ1Þ2 � 2bðtn�jþ1ÞE(~bj)þ E(~b
2
j )], ð2:10Þ

with respect to the parameters κ, θ, ξ, where ~bj ( j = 1,…, m) is a function of κ, θ, ξ. It is worth noticing
that, in the calibration, ~b0 ¼ bðtn�mÞ.

The quantities Eð~bjÞ and Eð~b2
j Þ are deterministic and can be easily evaluated by the following

recursive formulae:

E(~bj) ¼ E(~b
2
j�1)þ k[u� E(~b

2
j�1)]Dt,

and

E(~b
2
j ) ¼ E(~b

2
j�1)þ k2[u2 � 2uE(~b j�1)þ E(~b

2
j�1)]Dt

2

þ j2E(~b
2
j�1)Dtþ 2k[uE(~b j�1)� E(~b

2
j�1)]Dt:

In the results, we shall use m = 30 days, which keeps the number of unknowns much smaller than the
number of observations, and, in principle, allows the model to incorporate the most recent data.
3. Results
Next, we perform a series of numerical tests to compare the accuracy of the predicted accumulated
numbers of infections obtained using the techniques described in §2.

Firstly, the SEIR-type model in equations (2.1)–(2.5) is calibrated using 7-day moving average time-
series of the daily reports of COVID-19 infections and deaths from Chicago and New York City (NYC)
in the USA, the Canadian province of British Columbia (BC) and the Brazilian state of São Paulo (SP).
The datasets start mainly at the beginning of 2020 and end at the end of 2021. To stress-test the
proposed methodology, we have chosen to use data from different places since there may be differences
in the protocols of data collection and testing. More precisely, we seek the prediction performance from
different data sources and sites with various characteristics, such as population size and other
demographic factors. In addition, the data from these locations are publicly available from stable
databases that were periodically updated and corrected up to the time of the writing.

We consider predictions of infections for 10, 15, 30, 45, 60 and 90 days after the period used in the
calibration. Predictions are made as follows: we calibrate the model until some date tn using the
reported infections until the date tn, then, for any tj > tn we evaluate the model predictions of
infections using the five techniques proposed in §2. These predictions are updated daily until the end
of the dataset. We compare the reported and predicted accumulated numbers of infections, evaluating
the normalized error in the out-of-sample predictions as follows, denote by IREP the accumulated
number of reported infections during the time interval of forecast and by IPRED the accumulated
predicted infections for the same period, then,

ERROR ¼ jIREP � IPREDj
IREP

: ð3:1Þ

The error is evaluated for the daily out-of-sample predictions and classified by the number of days ahead
and the technique used to generate the prediction. By out-of-sample we mean that the model calibration
was performed with a dataset different from the one used to compare the model predictions. The daily
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Figure 1. Median values of the percentage error in the out-of-sample predicted accumulated numbers of infections. Predictions are
based on calibrated data and evaluated from 10 to 90 days ahead using the methods of extending the transmission parameter β
described in §2.3. The reports are different from those used in the calibration.
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errors are then used to evaluate median values and 70% CIs. The comparison between the errors’median
values can be found in figure 1. Table 1 presents the errors’ median values and their 70% CI.

To evaluate the errors of the stochastic techniques, namely TFSWN and MR, we used the median
values of 5000 samples of predicted infections.

As figure 1 and table 1 show, all the methods presented similar error values for predicting 10–15 days
ahead. Major differences started to appear from 30 to 90 days ahead predictions.

Predictions made with the AM presented small median error values with moderate 70% CI even for
prediction with larger time intervals. For NYC, Chicago and BC, it presented one of the smallest median
error values for all prediction time intervals. For SP, this technique also presented accurate results, but for
longer prediction time intervals, other techniques performed considerably better. Although it is the
simplest technique considered in this work, its performance is remarkably accurate.

The LR presented results similar to the AM technique. However, its errors were slightly larger than
those for the AM using the datasets from NYC, Chicago and BC. For SP, it presented a better performance
than the AM. It is worth mentioning that such a technique is also simple to implement and a nice
alternative to the AM.

The TFS and TFSWN presented similar results since their graphs matched for almost all places. They
both performed better for SP, but all the other techniques outperformed both. The main reason for such
results must be that TFS fits the data quite well, which is useful for adherence to data, but may not be the
case for model predictions. In other words, it seems that these techniques tend to overfit the data.
However, these techniques seems to perform better for longer periods, since, in some sense, they
capture better the log-term behaviour of the transmission parameter.

For Chicago and BC, the MR outperformed all the other techniques. For NYC it presented one of the
best results for predictions until 30 days. For SP, it outperformed the other techniques only for predictions
until 10 days. In general, for longer periods, like 60–90 days, the predictions 70% CIs were wider than
those obtained with other techniques. Although these results may indicate that such a technique can
be less accurate for larger prediction times, it was effective in predicting the magnitude of new waves
of infections for NYC.

In the second example, we focus on the forecast of large outbreaks that happened in New York
City during 2020 and 2021, including those caused by the emergence of the Delta (third wave) and
Omicron (fourth wave) variants of the SARS-CoV-2. The four periods considered in this example



Ta
bl
e
1.

M
ed
ian

va
lu
es

an
d
th
eir

co
rre
sp
on
di
ng

70
%

co
nfi
de
nc
e
in
te
rv
als

of
th
e
pe
rce
nt
ag
e
er
ro
r
in
th
e
ou
t-o
f-s
am
pl
e
pr
ed
ict
ed

ac
cu
m
ul
at
ed

nu
m
be
rs
of
in
fe
cti
on
s.
Pr
ed
ict
ion
s
ar
e
ba
se
d
on

ca
lib
rat
ed

da
ta
an
d

ev
alu
at
ed

fro
m
10

to
90

da
ys
ah
ea
d
us
in
g
th
e
m
et
ho
ds
of
ex
te
nd
in
g
th
e
tra
ns
m
iss
ion

pa
ra
m
et
er
β
de
sc
rib
ed

in
§2
.3
.T
he

re
po
rts

ar
e
di
ffe
re
nt
fro
m
th
os
e
us
ed

in
th
e
ca
lib
ra
tio
n.

10
da
ys

15
da
ys

30
da
ys

45
da
ys

60
da
ys

90
da
ys

Ne
w
Yo
rk
Cit
y
—

US
A

AM
6.
51

(1
.9
0–
14
.3
)

9.
70

(2
.4
4–
24
.6
)

22
.6
(4
.9
8–
49
.7
)

33
.8
(9
.2
3–
76
.2
)

44
.3
(1
2.
3–
11
2)

63
.4
(2
2.
8–
21
5)

LR
7.
74

(2
.1
2–
16
.8
)

11
.5
(2
.8
7–
26
.5
)

24
.5
(6
.9
3–
52
.3
)

35
.3
(9
.5
3–
79
.8
)

44
.1
(1
4.
2–
11
9)

64
.1
(1
9.
2–
24
4)

TF
S

15
.5
(4
.7
7–
35
.3
)

21
.3
(7
.2
1–
48
.6
)

32
.0
(1
0.
8–
73
.8
)

41
.8
(1
3.
9–
97
.5
)

51
.6
(1
3.
4–
14
5)

72
.0
(1
9.
7–
24
7)

TF
SW
N

15
.4
(4
.7
7–
35
.3
)

21
.2
(7
.1
6–
48
.6
)

32
.0
(1
0.
6–
73
.8
)

41
.8
(1
3.
8–
97
.3
)

51
.6
(1
3.
5–
14
4)

72
.0
(1
9.
8–
24
7)

M
R

4.
84

(1
.3
9–
11
.2
)

8.
23

(2
.3
2–
19
.5
)

23
.2
(6
.4
7–
52
.0
)

39
.4
(1
3.
7–
92
.4
)

51
.0
(2
0.
6–
16
7)

74
.0
(3
3.
1–
52
3)

Ch
ica
go

—
US
A

AM
7.
99

(2
.2
4–
18
.0
9)

12
.3
4
(3
.1
3–
27
.6
)

28
.1
(7
.6
2–
67
.8
)

49
.7
(1
7.
5–
11
0)

65
.9
(2
4.
7–
21
0)

79
.6
(2
8.
2–
58
8)

LR
10
.1
3
(2
.7
9–
20
.5
3)

14
.9
2
(4
.5
2–
31
.0
)

33
.5
(1
0.
3–
73
.7
)

53
.8
(2
2.
2–
12
9)

69
.4
(2
4.
7–
24
2)

82
.1
(2
8.
7–
62
0)

TF
S

22
.5
8
(6
.4
5–
46
.9
1)

30
.5
7
(9
.7
8 –
66
.9
)

49
.1
(1
7.
7–
14
0)

68
.0
(2
5.
5–
26
9)

76
.4
(3
1.
2–
42
2)

86
.4
(2
5.
3–
93
0)

TF
SW
N

22
.5
8
(6
.5
4–
46
.9
0)

30
.6
3
(9
.7
9–
66
.7
)

49
.0
(1
7.
8–
14
0)

68
.0
(2
5.
6–
26
8)

76
.3
(3
1.
3–
42
0)

86
.4
(2
5.
1–
92
9)

M
R

5.
89

(1
.8
6–
13
.8
6)

10
.5
6
(3
.1
4–
24
.7
)

27
.5
(7
.6
7–
66
.5
)

46
.4
(1
4.
6–
14
4)

61
.5
(2
1.
8–
31
0)

81
.8
(3
7.
4–
10
68
)

St
at
e
of
Sa
o
Pa
ul
o
—

Br
az
il

AM
6.
76

(1
.7
3–
21
.9
)

14
.6
(3
.9
4–
48
.6
)

27
.3
(7
.1
2–
74
.7
)

38
.4
(1
0.
6–
92
.8
)

48
.0
(1
4.
8–
13
6)

60
.4
(2
2.
8–
20
5)

LR
7.
15

(1
.8
0–
20
.7
)

11
.9
(3
.3
6–
38
.8
)

22
.2
(5
.7
9–
67
.0
)

28
.7
(8
.9
0–
84
.3
)

36
.4
(1
1.
3–
10
4)

50
.4
(1
4.
7–
20
6)

TF
S

10
.2
(2
.0
2–
31
.2
)

13
.0
(2
.4
5–
36
.8
)

19
.0
(5
.0
4–
49
.9
)

26
.1
(7
.4
5–
62
.6
)

33
.2
(8
.7
1–
82
.3
)

45
.7
(1
3.
2–
13
1)

TF
SW
N

10
.3
(2
.0
0–
30
.7
)

13
.0
(2
.5
7–
35
.5
)

21
.1
(5
.6
7–
64
.8
)

30
.4
(8
.4
8–
80
.9
)

35
.9
(1
1.
2–
89
.9
)

47
.5
(1
4.
3–
13
8)

M
R

4.
98

(1
.0
1–
13
.7
)

15
.6
(4
.1
5–
54
.2
)

32
.9
(9
.5
8–
90
.0
)

48
.0
(1
6.
4–
13
9)

62
.2
(2
0.
9–
30
3)

74
.8
(2
8.
4–
74
8)

Br
iti
sh
Co
lu
m
bi
a
—

Ca
na
da

AM
7.
52

(2
.3
6–
20
.4
)

12
.7
(3
.6
6–
32
.2
)

27
.7
(6
.1
9–
68
.9
)

43
.4
(1
1.
9–
11
7)

61
.2
(1
6.
9–
21
9)

84
.4
(3
1.
8–
60
6)

LR
8.
97

(2
.7
4–
24
.4
)

14
.9
(4
.6
1–
37
.4
)

30
.8
(6
.6
6–
75
.6
)

47
.3
(1
4.
1–
13
1)

64
.7
(1
5.
4–
24
8)

88
.3
(2
8.
8–
63
9)

TF
S

19
.2
(5
.1
6–
42
.8
)

26
.8
(6
.8
7–
60
.8
)

45
.0
(1
2.
2–
89
.5
)

61
.7
(1
4.
7–
18
5)

73
.8
(1
7.
5–
31
1)

91
.2
(3
0.
9–
76
8)

TF
SW
N

19
.2
(5
.2
3–
42
.8
)

26
.9
(6
.8
4–
60
.8
)

45
.0
(1
2.
1–
89
.5
)

61
.7
(1
4.
7–
18
4)

73
.5
(1
7.
4–
31
1)

91
.2
(3
0.
9–
76
9)

M
R

5.
11

(1
.4
2–
14
.1
)

9.
41

(2
.2
9–
27
.9
)

22
.8
(5
.2
2–
67
.2
)

36
.1
(1
0.
6–
13
6)

55
.2
(1
5.
3–
28
6)

77
.9
(2
7.
9–
14
79
)

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220489
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 D

ec
em

be
r 

20
22

 



5

4

3

2

1

0

ac
cu

m
. i

nf
ec

tio
ns

ac
cu

m
. i

nf
ec

tio
ns

ac
cu

m
. i

nf
ec

tio
ns

ac
cu

m
. i

nf
ec

tio
ns

ac
cu

m
. i

nf
ec

tio
ns

ac
cu

m
. i

nf
ec

tio
ns

ac
cu

m
. i

nf
ec

tio
ns

ac
cu

m
. i

nf
ec

tio
ns

4

2

0

8

6

4

2

0

2.0

1.5

1.0

0.5

0

8

6

4

2

0

6

3

2

1

0

15

0

2

4

6

8

10

5

0

5 Apr 19 Apr  3 May  18 Oct 1 Nov

 1 Nov 7 Aug 24 July 10 July

 5 Apr  19 Apr  3 May

 7 Aug 24 July 10 July

 18 Oct  1 Nov  15 Nov

 1 Nov  15 Nov  29 Nov

 17 May
2020

 21 Aug
2021

 21 Aug
2021

 15 Nov  29 Nov

 15 Nov

 29 Nov
2020

 13 Dec
2021

 13 Dec
2021

 29 Nov
2020

 17 May
2020

observed
predicted

observed
predicted

observed
predicted

observed
predicted

observed
predicted

observed
predicted

observed
predicted

observed
predicted

×105

×104

×104

×106

×104

×104

×105

×104

average average

averageaverage

linear regression linear regression

linear regressionlinear regression

Figure 2. Comparison between reports and model predictions of accumulated COVID-19 infections during 45 consecutive days.
Predictions are made just before four outbreaks of COVID-19 in NYC, including those triggered by the Delta and Omicron
variants. Bars are the reports, solid lines and the filled areas are the median values and the 90% CI of model predictions,
respectively. Predictions are evaluated using the methods for extending the transmission parameter β described in §2.3.
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are from 5 April to 17 May 2020, from 18 October to 29 November 2020, from 10 July to 21 August 2021
and from 1 November to 13 December 2021, all them with roughly 45 days. In all cases, the calibration
uses data until the day before the period of prediction, namely, 4 April 2020, 17 October 2020, 9 July
2021 and 9 November 2021. Predictions are compared with the accumulated number of reported
infections and confidence intervals are generated with bootstrapping [32]. For MR and TFSWN, we
use median values of infections. The comparison between reported and predicted accumulated
infections during the periods of interest can be found in figures 2–4. Each column of panels refers
to one outbreak.

In the first wave of infections, the LR and MR presented the best forecast performance with median
values close to the observed number of infections. The LR started to underpredict the magnitude of the
wave after 10–15 days of forecast, whereas the MR presented a wide 90% CI containing the reports. The
AM presented accurate predictions until 10–15 days ahead. After this period, the method over predicted
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considerably the reported infections. The TFS and TFSWN forecast poorly the first outbreak probably
due to its tendency for overfitting. It is worth noticing that, during the first wave, data were poorer.

In the other three outbreaks, all the models presented similar results. The AM forecast well the
magnitude of the three waves, despite its 90% CI, for the second and fourth waves, did not contain
the reported values for periods longer than 20–30 days. The LR presented more accurate predictions
than the AM. It only overpredicted the third wave. The TFS and TFSWN predicted well the
magnitude of the second wave but underpredicted the other two. The MR predicted accurately all the
three waves, with its median values matching the reports of the third wave. The 90% CI was not too
wide and contained the reports.

Overall, all the techniques performed well for shorter periods, i.e. from 10 to 15 days. For periods
until 45 days, the AM, LR and MR seem to perform considerably better than the TFS and TFSWN.
However, for larger periods of forecast, predictions become less reliable and can be only considered
qualitatively.
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Although the results of the AM, the LR and the MR are comparable, the MR has the advantage of
incorporating the randomness of the transmission, offering a series of possible future scenarios. Based
on these examples we suggest that, for shorter periods of forecast, i.e. until 45 days, the AM and MR
are reliable choices. For longer periods, their results must be compared with those given by the TFS
or the TFSWN. The advantage of the TFSWN over the TFS is the incorporation of uncertainty, which
makes it easy to provide predictions naturally inside confidence intervals.

To illustrate that the results above can be extended to a larger class of SEIR-type models, we repeat
the first experiment with NYC data and the model proposed by Albani et al. [3]. The version of the
model used here accounts for different levels of disease severity and their dependency on age-
range. Figure 5 shows the evolution of the median values of the normalized forecast errors. The
same values with their 70% CI can be found in table 2. As figure 5 and table 2 show, by including
more characteristics of the disease in the SEIR-type model, the overall forecast accuracy did not
improve. We used all the forecast techniques from §2.3. All of them presented similar forecast
errors. Such a pattern may be linked to the increase of the uncertainties in model calibration, since
more sophisticated models have larger sets of unknowns for the same experimental datasets, since
NYC does not have daily reports of COVID-19 cases, hospitalizations and deaths classified by
age-range.
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4. Discussion
Although the model used to test different prediction techniques may seem to be simple, by considering
time varying transmission parameter and death rate, it incorporates naturally stochastic fluctuations in
the pathogen transmission, like the introduction of new variants, changes in the disease virulence and
mortality. In other words, providing an accurate nowcast. More sophisticated models are harder to
calibrate and to forecast scenarios within longer periods, it is necessary to predict the evolution of
other quantities, like mobility information or the disease severity dependency on age. It is also
difficult to estimate the causality relations between transmission and mobility [33,34]. Moreover, as
figure 5 shows, the performance of more sophisticated models may not be considerably better. Thus,
if the main interest is in scenarios regarding the general population, it is better to use simpler, but
robust and accurate, models.

Using the same dataset, predictions with different techniques presented considerably different
performances in forecast. For shorter periods, the AM, the LR and the MR outperformed the TFS and
the TFSWN. It is also interesting that the MR predicted accurately the four waves of infections in
NYC, as illustrated by figure 4. In all cases, the model prediction 90% CI contained the reported
infections. This indicates that the MR incorporates better the uncertain nature of the virus
transmission and shows that transmission parameter β must be modelled as a stochastic process.

The reliability of model forecast decreases considerably with respect to the length of the prediction
time interval, as tables 1–2 show. This is due to unpredictable regime changes in the transmission
dynamics, like the emergence of new strains of the pathogen, vaccination or yet effectiveness of non-
pharmaceutical measures like lockdowns. Thus, for periods longer than 45 days, predictions must be
considered only qualitatively.

Finally, the present study has some limitations since we considered only the class of SEIR-type
models. There are a number of other ways to model the dynamics of infectious diseases [2], but
accounting for them is beyond the scope of this article that is intended to enlighten the stochastic
nature of transmission. Moreover, we did not perform a rigorous statistical analysis of the
transmission parameter and other rates defining the SEIR-type model in equations (2.1)–(2.5) since the
calibration techniques considered in this work are deterministic. The statistical analysis of SEIR-type
models and their parameters will be the subject of a future work.
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