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Abstract

The effects of bovine leukemia virus (BLV) on the immune response have been extensively investigated; however,
its effects on mammary gland immunity are only speculative. Although BLV has a tropism for B cells, it can affect
both adaptive and innate immunities because these systems share many effector mechanisms. This scenario is the
basis of this investigation of the effects of BLV on mammary gland immunity, which is largely dependent upon
neutrophilic functions. Thus, the present study sought to examine neutrophilic functions and the lymphocyte
profile in the milk of naturally BLV-infected cows. The viability of the milk neutrophils and the percentage of milk
neutrophils that produced reactive oxygen species (ROS) or phagocytosed Staphylococcus aureus were similar
between BLV-infected and BLV-uninfected dairy cows. Furthermore, the expression of CD62L and CD11b by the milk
neutrophils and the percentage of milk neutrophils (CH138+ cells) that were obtained from the udder quarters of
the BLV-infected cows were not altered. Conversely, the median fluorescence intensity (MFI) representing intracellular
ROS production and the phagocytosis of S. aureus, the expression of CD44 by the milk neutrophils and the percentage
of apoptotic B cells were lower in the milk cells from BLV-infected dairy cows, particularly those from animals with
persistent lymphocytosis (PL). The lymphocyte subsets were not different among the groups, with the exception of the
percentage of CD5−/CD11b− B cells, which was higher in the milk cells from BLV-infected cows, particularly those with
PL. Thus, the present study provides novel insight into the implications of BLV infection for mammary gland immunity.
Introduction
Bovine leukemia virus (BLV) is a member of the Retroviri-
dae family and the Deltaretrovirus genus that is genetically
and structurally similar to the primate T-lymphotropic
viruses types 1–5 (i.e., HTLV-1 to 4). Although BLV has
been successfully eradicated in some regions of Europe,
it is among the most widespread livestock pathogens in
many countries, particularly in dairy herds. BLV infec-
tions in cattle may remain clinically silent or present as
persistent lymphocytosis (PL); more rarely, BLV infec-
tion may result in B cell lymphoma. PL is characterized
by a chronic elevation in the number of circulating B
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lymphocytes and is found in approximately 20-30% of
BLV-infected cattle [1].
Various studies have investigated the effects of BLV

infection on lymphocyte subsets [1-8], neutrophil func-
tions [9-14] and B cell viability [15-22]. All of these
studies evaluated these parameters in the blood, and
therefore, the effects of BLV infection on the lympho-
cyte subsets, neutrophil functions and B cell viability in
milk are only speculative. However, mastitis [23-30] and
decreased milk production [31-35] have been associated
with BLV infection, particularly in BLV-infected cows with
PL [31] and high-performing infected dairy herds [35].
These findings prompted an investigation into the effects
of BLV, which is a B cell tropic virus [1,6,15], on mam-
mary gland immunity, which is largely dependent upon
neutrophil functions and recruitment. Notably, the im-
pact of some chronic diseases with low lethality, such
ntral. This is an Open Access article distributed under the terms of the Creative
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as BLV infection, may be underestimated because they
may be associated with comorbidities, such as mastitis,
which is the most costly dairy cattle disease. This dis-
ease threatens the image of the dairy sector because of
animal welfare issues and issues related to milk quality
and public health due to increased risks of antimicro-
bial residues and the emergence of resistant bacteria. A
better understanding of the implications of BLV infec-
tion on mammary gland immunity is critical for control-
ling mastitis and facilitating the strict control of these
infections to improve dairy cattle productivity. Thus, the
present study sought to explore milk lymphocyte subsets,
neutrophil functions and B cell viability from naturally
BLV-infected cows.

Materials and methods
Experimental design and collection of samples
The present study used 57 quarters of the mammary
glands of 19 dairy cows in a commercial herd, at different
lactation stages. Due to the effects of bacterial mastitis
pathogens on neutrophil function [36-40], the following
exclusion criteria were applied: 1) bacteriologically positive
quarters; 2) quarters with abnormal secretions in the strip
cup test; and 3) quarters with high somatic cell counts
(SCCs) based on the previously proposed threshold for
SCC [41,42].
The sera of all of the animals were tested for BLV

using an agar gel immunodiffusion (AGID) assay (Tecpar®,
Curitiba, Brazil) and an ELISA (VMRD Pullman Inc.,
Pullman, WA, USA, cat. number 284–5), using gp51 as
the antigen. These animals were divided uniformly into
the following three groups according to the sera test re-
sults: negative for BLV infection according to the AGID
and ELISA assays and lacking hematological alterations
[43] (healthy; n = 8; 24 quarters); positive for BLV accord-
ing to both tests and lacking hematological alterations
[43], which is commonly referred to as aleukemic (AL;
n = 6; 16 quarters); and positive for BLV according to
both tests and exhibiting PL (n = 5; 17 quarters). The
BLV-infected cattle were classified as having PL when
their lymphocyte counts exceeded 1 × 104 mL−1 and their
leukocyte counts exceeded 1.5 × 104 mL−1 as established
by Thurmond et al. [44]. One hundred ten days after the
first sampling for the serodiagnosis of BLV, additional
blood samples for the hematological procedures and sero-
diagnoses of BLV were collected to confirm the persist-
ence of lymphocytosis. At this time (110 days after the
first sampling), milk cells for the SCC, bacteriological ana-
lysis and flow cytometry analysis to determine neutrophil
function and lymphocyte profile were also collected.
First, the strip cup test was performed to determine

the presence of clots or flakes or otherwise obviously
abnormal secretions. Then, predipping was performed,
using one towel for each teat. After discarding the first
three milk streams, the ends of the teats were scrubbed
with 70% ethanol using a piece of cotton, and single milk
samples from the individual mammary quarters were
aseptically collected in sterile vials for the bacteriological
analysis. Finally, milk samples for the SCC and the evalu-
ation of neutrophilic function and lymphocyte profile were
collected. The samples were maintained at 4 °C until they
arrived at the laboratory. The milk samples for the bac-
teriological analysis were stored at −20 °C for a maximum
of 30 days until the analysis.
Subsequently, each sample was codified and random-

ized, and further analyses were performed in which the re-
searcher was blinded to the BLV status of the animal from
which the sample was drawn. This research complied with
the Ethical Principles for Animal Research and was ap-
proved by the Bioethics Commission.

Hematological procedures
The total leukocyte counts were determined using an
automated cell counter (ABX VET ABC, Horiba ABX
Diagnostic®, Montpellier, France). The differential leuko-
cyte counts were performed using routine smears.

Bacteriological analysis
The bacteriological analysis was performed by culturing
0.01 mL of each milk sample on 5% sheep blood agar
plates. The plates were incubated for 72 h at 37 °C, fol-
lowed by Gram staining, observation of colony morph-
ologies and biochemical testing [45]. A milk sample was
considered to be culture-positive when the growth of ≥ 3
colonies was detected, with the exception of animals
with Staphylococcus aureus or Streptococcus agalactiae
infections in their quarters, which were considered to
be culture-positive when the growth of ≥ 1 colony was
detected [46,47].

Determination of SCC
The milk samples for SCC determination were collected
in 40-mL vials containing microtablets of the preservant
agent bronopol (2-bromo-2-nitropane-1,3-diol). Subse-
quently, the SCC were performed using the Somacount
300 automated somatic cell counter (Bentley Instruments,
Chaska, MN, USA).

Separation of milk cells
The separation of the milk cells was performed as de-
scribed by Koess and Hamann [48]. Briefly, 1 L of milk
was diluted with 1 L of phosphate-buffered saline (PBS;
pH 7.4; 1.06 mM Na2HPO4, 155.17 mM NaCl and
2.97 mM Na2HPO4.7H2O). After centrifugation at 1000 × g
for 15 min, the cream layer and supernatant were dis-
carded. The cell pellet was then washed once using 30 mL
of PBS and centrifuged at 400 × g for 10 min. The cells
were resuspended in 1 mL of RPMI-1640 nutritional
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medium (R7638, Sigma Aldrich, USA) supplemented
with 10% fetal bovine serum (Cultilab, Brazil) and counted
using a Neubauer chamber. Cell viability was first eval-
uated by trypan blue exclusion. The milk cells were then
diluted with nutritional medium containing 10% fetal bo-
vine serum to a concentration of 2 × 106 viable cells mL−1.

Enumeration of lymphocyte subpopulations
The cells were washed with PBS and stained to detect
the combination of CD3, CD4 and CD8, the combina-
tion of CD3, CD4 and CD25 and the combination of
CD21, CD5 and CD11b following incubation with the
primary antibodies (Abs) for 30 min at room tempera-
ture. The identification of lymphocyte subsets was based
on their cytoplasmic granularities and mean fluorescence
intensities following a two-step fluorescent immunolabel-
ing protocol using primary anti-bovine monoclonal Abs
and secondary Abs coupled to long-wavelength fluores-
cent probes. Thus, the following primary monoclonal an-
tibodies (mAbs) directed against bovine lymphocytes
were used: mouse IgG1 anti-bovine CD3 (T lymphocytes,
MM1A, VMRD Pullman Inc. Corp®), mouse IgG2a anti-
bovine CD4 (IL-A11, VMRD Pullman Inc. Corp®), mouse
IgM anti-bovine CD8α (BAQ111A, VMRD Pullman Inc.
Corp®), mouse IgG3 anti-bovine CD25 (LCTB2A; VMRD
Pullman Inc. Corp®), mouse IgM anti-bovine CD21 (B
lymphocytes, BAQ15A, VMRD Pullman Inc. Corp®),
mouse IgG2a anti-bovine CD5 (B29A, VMRD Pullman
Inc. Corp®) and mouse IgG1 anti-bovine CD11b (MM12A,
VMRD Pullman Inc. Corp®). After washing with PBS,
the cells were incubated for 30 min at room tempera-
ture with the following secondary Abs: goat anti-mouse
IgG1 conjugated to phycoerythrin-Cy5 (PE-Cy5) (M32018;
Invitrogen, Carlsbad, CA, USA), goat anti-mouse IgM
conjugated to fluorescein isothiocyanate (FITC) (M31501,
Invitrogen), goat anti-mouse IgG2a conjugated to phyco-
erythrin (PE) (M32204, Invitrogen) and goat anti-mouse
IgG3 conjugated to FITC (M32701, Invitrogen). The cells
were then washed with PBS and immediately analyzed
using flow cytometry. A total of 20 000 milk cells, exclud-
ing most of the cellular debris, was examined per sample.
The FlowJo software (TreeStar Inc., Ashland, OR, USA)
was used to analyze the data. The results were corrected
for autofluorescence content, which was defined as the
fluorescence that was associated with the non-labeled
freshly isolated milk cells from the same cow.

Identification of neutrophils
Milk neutrophils were differentiated from other cells by
indirect fluorescent labeling. The cells were incubated
with an unlabeled primary monoclonal anti-bovine gra-
nulocyte antibody (anti-CH138A, VMRD Pullman Inc.
Corp®) for 30 min at room temperature. Next, 1 mL of PBS
was added to the cell suspension, which was centrifuged
at 400 × g for 8 min. Finally, a labeled secondary Ab was
added, and the sample was incubated for 30 min at room
temperature in the dark to visualize the bound CH138A.
The neutrophils were identified using flow cytometry
based on the cells’ cytoplasmic granularities and CH138A
positivities as previously described [40,49]. The labeled se-
condary mAbs included allophycocyanin- (APC; M31505,
Invitrogen), FITC- (M31501, Invitrogen) or PE-conjugated
(M31504, Invitrogen) goat anti-mouse IgM mAb. A total
of 20 000 milk cells, excluding most of the cellular debris,
was examined per sample. The FlowJo software (TreeStar
Inc., Ashland, OR, USA) was used to analyze the data.
The results were corrected for autofluorescence content,
which was defined as the fluorescence that was associated
with the non-labeled freshly isolated milk cells from the
same cow.

Detection of apoptosis by flow cytometry
The death of neutrophils (CH138+) and B cells (CD21+)
was assessed using dual labeling with an annexin V anti-
body and propidium iodide (PI; K2350, APOPTEST-FITC,
Dako Cytomation, The Netherlands) and flow cytometric
analyses as previously described [40,49]. Briefly, 2 × 105

viable milk cells were suspended in 100 μL of binding
buffer (10 mM HEPES, 150 mM NaCl, 1 mM MgCl2 and
1.8 mM CaCl2) containing anti-annexin V-FITC antibody
and incubated at room temperature for 20 min in the
dark. Immediately before flow cytometry analysis, 5 μL of
a 250 μg/mL PI solution was added. Next, the neutrophils
were labeled using mAbs as described above.
To analyze the data, scatter plots were generated for

the gated neutrophils or B cells. The living, nonapoptotic
cells were negative for both FITC-labeled anti-annexin V
and PI. The cells that were positive for FITC-labeled anti-
annexin V but negative for PI were classified as apoptotic
cells [40,49]. The necrotic subpopulation was excluded
from the analysis [49]. A total of 20 000 milk cells, exclud-
ing most of the cellular debris, was examined per sample.
The FlowJo software (TreeStar Inc., Ashland, OR, USA)
was used to analyze the data.

Intracellular reactive oxygen species production
Intracellular reactive oxygen species (ROS) production was
assessed by flow cytometry using 2′,7′-dichlorofluorescein
diacetate (DCFH-DA) as a probe [50]. Briefly, 2 × 105 vi-
able milk cells from each quarter that were previously as-
sessed by trypan blue exclusion were incubated at 37 °C for
30 min with 0.3 μM DCFH-DA (D6883, Sigma Aldrich, St.
Louis, MO, USA).
The intracellular 2′,7′-dichlorofluorescein (DCF) fluo-

rescence of the neutrophils was determined by flow
cytometry using an excitation wavelength of 488 nm.
DCFH-DA, which is a cell-permeable, nonfluorescent
probe, is converted to DCF by ROS in a dose-dependent
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manner, resulting in fluorescence emission. The green
fluorescence of DCF was detected at 500–530 nm.
The percentage of neutrophils producing ROS was cal-

culated as the number of fluorescent neutrophils divided
by the total neutrophil count and multiplied by 100. The
median fluorescence intensity (MFI) of ROS production
was estimated from the median of DCF fluorescence di-
vided by the number of neutrophil that produced ROS
[40]. For this assay, 10 000 gated neutrophils were exam-
ined per sample. The FlowJo software (TreeStar Inc.,
Ashland, USA) was used to analyze the data. The re-
sults were corrected for autofluorescence content, which
was defined as the fluorescence that was associated with
the non-labeled freshly isolated milk cells from the
same cow.

Preparation of PI-labeled bacteria
PI-labeled Staphylococcus aureus (ATCC 25923) was
prepared as proposed by Hasui et al. [50] with some
modifications. Briefly, S. aureus was cultured for 18 h
at 37 °C on brain-heart infusion agar. Subsequently, the
bacteria were heat-killed by incubation at 60 °C for
30 min, after which they were washed three times using
a sterile saline solution (0.9% NaCl). The bacterial dens-
ity was adjusted to an absorbance of 2.50 at 620 nm,
yielding approximately 2.4 × 109 bacteria mL−1, as pre-
viously described [50]. The bacteria were then labeled
using a 5% PI (P4170, Sigma Aldrich, St. Louis, MO,
USA) solution for 30 min at room temperature. The
fluorescent bacteria were washed three times and sus-
pended in PBS containing 5 mM glucose and 0.1%
gelatin, and aliquots were stored at −80 °C. Thereafter,
the PI labeling of the bacteria was confirmed by flow
cytometry.

Phagocytosis assay
The phagocytosis assay was performed using flow cy-
tometry of PI-labeled S. aureus as previously described
by Hasui et al. [50]. Briefly, 2 × 105 viable milk cells were
incubated with 100 μL of heat-killed, PI-labeled S.
aureus and 900 μL of PBS for 30 min at 37 °C. Subse-
quently, 2 mL of 3 mM EDTA was added, and after
centrifugation at 400 × g for 10 min, the leukocytes
were resuspended in 300 μL of PBS and analyzed by
flow cytometry.
The percentage of neutrophils that phagocytized the

bacteria was equal to the number of fluorescent neutro-
phils divided by the total neutrophil count and multi-
plied by 100. The MFI of S. aureus phagocytosis was
estimated from the median value of PI fluorescence di-
vided by the number of neutrophils that phagocytized S.
aureus [40]. At least 20 000 cells were examined per
sample. The Flow Jo Tree Star Software (TreeStar Inc.,
Ashland, OR, USA) was used to analyze the data.
Expression of L-selectin, β2-integrin and CD44
The identification of neutrophils expressing L-selectin
(CD62L), the β-chain of β2-integrin (CD11b) and one of
the three endothelial-selectin (E-selectin) ligands (CD44)
was performed by flow cytometry using the following
mAbs: a FITC-conjugated mouse anti-bovine CD62L
(MCA1649F, AbDSerotec, Oxford, England), a primary
mouse IgG1 anti-CD11b mAb (MM12A, Pullman Inc.
Corp®), a phycoerythrin-Cy5 (PE-Cy5)-conjugated goat
anti-mouse IgG1 Ab (M32018, Invitrogen), a primary
mouse IgG3 anti-CD44 mAb (BAG40A, Pullman Inc.
Corp®) and an FITC-conjugated goat anti-mouse IgG3
Ab (M32701, Invitrogen). First, dot plots of gated neu-
trophils (CH138A+) were generated as previously de-
scribed. The neutrophils were identified as previously
described. Then, unlabeled primary mAbs that were di-
rected against CD11b and CD44 were added to the cell
suspension and incubated for 30 min at room tempe-
rature. The isolated milk cell suspension was centrifuged
at 400 × g for 8 min, and a labeled CD62L mAb and
secondary labeled mAbs for the detection of the anti-
CD11b and -CD44 Abs were added. Finally, the isolated
milk cells were incubated for 30 min at room tempe-
rature in the dark to allow for the visualization of cells
expressing CD62L, CD11b and CD44. We chose the
relative MFI because this parameter was much more dis-
criminating compared with the percentage of positive
cells. The MFI provides an accurate measurement of the
brightness of the stained cells and is thus an indicator
of the number of receptors per cell [51]. For this assay,
10 000 gated neutrophil cells were examined per sample.
The Flow Jo Tree Star Software (TreeStar Inc., Ashland,
OR, USA) was used to analyze the data.

Statistical analyses
First, the distributions of all of the variables were exam-
ined using normal probability plots obtained using the
Shapiro and Wilk tests. The data were analyzed using a
multivariate analysis of variance. Then, the Kruskal-Wallis
and Mann–Whitney tests were applied. The model con-
sidered the quarters and the cows to be nested within
the cows. The statistical analyses were performed using
the STATA statistical software version 12 (Stata Corp.,
College Station, Texas, USA). The results are reported
as the mean ± standard deviation. Significance was set
at P ≤ 0.05.

Results
The results are summarized in Tables 1, 2 and 3. The
SCC, lactational status and parity (data not shown) values
did not differ among the groups. Here, we found that BLV
infection detrimentally affected some important milk neu-
trophilic functions. For instance, the MFI that represented
the amount of intracellular ROS production by the milk



Table 1 Characteristics of neutrophils in the milk of healthy and bovine leukemia virus (BLV)-infected cows

Group/Variable Negative (n = 24) AL (n = 16) PL (n = 17)

CH138+ (%) 13.72 ± 14.91a 8.89 ± 9.72a 11.88 ± 15.34a

Annexin V−/PI− (%) 30.74 ± 12.92a 39.05 ± 16.06a 24.97 ± 16.01a

Annexin V+/PI−(%) 39.50 ± 14.48a 37.03 ± 21.92a 39.27 ± 19.64a

ROS production (%) 54.91 ± 22.92a 68.20 ± 21.85a 69.98 ± 15.39a

Intensity of ROS production (MFI) 2069 ± 1008a 1603 ± 585.7b 865.6 ± 447.3c

S. aureus phagocytosis (%) 63.23 ± 17.80a 55.11 ± 20.88a 58.84 ± 15.21a

Intensity of S. aureusphagocytosis (MFI) 219.8 ± 100.3a 211.2 ± 80.77a 104.2 ± 39.11b

CD44 expression (MFI) 22.03 ± 22.65a 1.07 ± 0.18b 1.03 ± 0.09b

CD62L expression (MFI) 13.45 ± 15.41a 1.01 ± 0.00a 1.01 ± 0.00a

CD11b expression (MFI) 755.8 ± 344.6a 633.3 ± 555.0a 843.7 ± 334.9a

Different superscripted lettersa,b,c within a row indicate significant differences (P ≤ 0.05) between the values. The results are shown as the mean ± SD.
AL: aleukemic BLV-infected cows; PL: BLV-infected cows with persistent lymphocytosis; PI: propidium iodide; S. aureus: Staphylococcus aureus; ROS: reactive oxygen
species; MFI: median fluorescence intensity.
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neutrophils was lower for the BLV-infected cows, particu-
larly those with PL, than for the uninfected cows. Further-
more, the MFI that represented the amount of S. aureus
phagocytosis by the milk neutrophils was also the lowest
for the PL group. Moreover, the level of CD44 expression
by milk neutrophils from the BLV-infected dairy cows was
lower than that of milk neutrophils collected from the un-
infected cows (Table 1).
The lymphocyte subsets did not differ among the groups,

with the exception of the percentage of CD5−/CD11b− B
cells, which was higher in the BLV-infected cows, particu-
larly those with PL (Table 2). Furthermore, the percentage
of apoptotic B cells was lower in the BLV-infected dairy
cows (Table 3), particularly those with PL, than in the un-
infected cows.
Table 2 Percentage of lymphocyte subsets in the milk from h

Group/Variables Negative (n = 25)

CD3+ (T cells) (%) 7.13 ± 5.04a

CD4+/CD8− T cells (%) 1.32 ± 1.19a

CD4−/CD8+ T cells (%) 3.15 ± 2.57a

CD4+/CD8+ T cells (%) 0.41 ± 0.36a

CD4−/CD8− T cells (%) 2..24 ± 2.33a

CD3+ (T cells) (%) 6.31 ± 4.99a

CD4+/CD25− T cells (%) 1.38 ± 1.32a

CD4−/CD25+ T cells (%) 0.06 ± 0.04a

CD4+/CD25+ T cells (%) 0.24 ± 0.23a

CD4−/CD25− T cells (%) 4.63 ± 4.11a

CD21+(B cells) (%) 7.90 ± 5.53a

CD5+/CD11− B cells (%) 0.87 ± 0.88a

CD5−/CD11+ B cells (%) 3.84 ± 4.01a

CD5+/CD11+ B cells (%) 0.85 ± 0.78a

CD5−/CD11− B cells (%) 2.35 ± 1.73a

Different superscripted lettersa,b,c within a row indicate significant differences (P ≤ 0
AL: aleukemic BLV-infected cows; PL: BLV-infected cows with persistent lymphocyto
Discussion
It is not easy to precisely delineate innate immunity be-
cause it is intricately enmeshed with adaptive immunity,
and the two systems share many effector mechanisms [37].
Thus, various viruses can affect the general functions of
both innate and adaptive immunities. This phenome-
non predisposes animals to different coinfections or su-
perinfections and can increase the severity of infections
[25,28,30,52-55]. As previously mentioned, the impact of
some chronic diseases with low lethalities may be under-
estimated because of their associations with comorbidities.
This scenario prompted an investigation into the effects of
BLV, which is a B cell tropic virus [1,6,15], on mammary
gland immunity, which is largely dependent on neutrophil
function and recruitment [36-40].
ealthy and bovine leukemia virus (BLV)-infected cows

AL (n = 16) PL (n = 17)

10.46 ± 9.30a 11.66 ± 7.27a

1.83 ± 1.73a 2.55 ± 2.48a

4.45 ± 2.02a 4.51 ± 3.86a

0.33 ± 0.30a 0.23 ± 0.19a

3.84 ± 5.74a 4.38 ± 3.87a

10.28 ± 10.44a 11.06 ± 6.81a

1.84 ± 1.67a 2.70 ± 2.46a

0.13 ± 0.18a 0.15 ± 0.14a

0.21 ± 0.29a 0.29 ± 0.36a

8.11 ± 8.58a 7.92 ± 4.62a

13.02 ± 8.14a 17.44 ± 7.20a

0.71 ± 0.45a 0.72 ± 0.47a

6.80 ± 6.97a 8.59 ± 5.15a

0.85 ± 0.51a 1.01 ± 0.66a

4.67 ± 3.26b 7.11 ± 3.89c

.05) between the values. The results are shown as the mean ± SD.
sis.



Table 3 Viability of B cells in milk from healthy and
bovine leukemia virus (BLV)-infected cows.

Group/Variables Negative (n = 25) AL (n = 16) PL (n = 17)

Annexin V−/PI−(%) 37.13 ± 17.99a 51.15 ± 16.73a 71.31 ± 13.02a

Annexin V+/PI−(%) 55.72 ± 17.59a 31.22 ± 18.43b 12.35 ± 6.44c

Different superscripted lettersa,b,c within a row indicate significant differences
(P ≤ 0.05) between the values. The results are shown as the mean ± SD.
AL: aleukemic BLV-infected cows; PL: BLV-infected cows with persistent
lymphocytosis; PI: propidium iodide.
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Neutrophils form the first line of cellular defense against
invading pathogens [36-40] and are essential for the innate
host defense against invading microorganisms. These cells
eliminate pathogens by a process known as phagocytosis.
During phagocytosis, neutrophils produce ROS to kill in-
vading pathogens [36-40,56].
Apoptosis of bovine neutrophils implies impaired pha-

gocytic and oxidative burst activities [47,57,58]. Neutro-
phil viability is closely related to neutrophil phagocytosis
and oxidative burst activities [56,58]. Thus, the non-
significant difference that was observed in neutrophil
viability rates among the groups in this study may be
related to the results for the percentage of neutrophils
that produced ROS or phagocytosed S. aureus.
While the study size is limited, we observed a lower

MFI representing the phagocytosis of S. aureus and the
intracellular production of ROS by the milk neutro-
phils from the BLV-infected cows, particularly those
with PL. BLV-infected cows with PL have higher proviral
loads [59,60] that are linked to lower levels of inter-
feron (IFN)-γ expression by peripheral blood mono-
nuclear cells [7,61-63], which is regulated by many
factors, such as the PD-1 [7,62] and Tim-3/Gal-9 path-
ways [63]. IFN-γ has a positive effect on bovine neutro-
phil phagocytosis and ROS production [64], and this
characteristic together with the altered production of
IFN-γ by the peripheral blood mononuclear cells of
BLV-infected cattle may explain our results regarding
the deficient functions of the milk neutrophils. Consist-
ent with our findings, Takamatsu et al. [11] found that
most sera from leukemic cattle inhibit the phagocytosis
of blood neutrophils.
In this study, no significant differences were observed

in the levels of CD62L and CD11b expression by the
milk neutrophils of BLV-infected cows. CD62L mediates
the initial transient attachment of circulating granulo-
cytes to the activated endothelium. The surface expres-
sion and rapid functional activation of Mac-1 (CD11b/
CD18) is essential for the subsequent granulocyte mi-
gration to the site of inflammation. Following activa-
tion, CD62L is shed from the cell surface by proteolysis,
whereas the surface expression of Mac-1 is up-regulated
[51]. Therefore, the migration of neutrophils across endo-
thelial cells is almost completely dependent upon CD18,
the β-chain of β2 integrins and to a lesser extent on
CD11b, which is one of the α-chains of β2 integrins [36].
Further, we found decreased levels of CD44 expres-

sion in the milk neutrophils from the BLV-infected
dairy cows. CD44 was identified as one of the three
endothelial-selectin ligands that are present on neutro-
phils, which are responsible for hindering their move-
ment and activating their rolling. However, CD44 is
required, but not essential, for neutrophil extravasation
during inflammation [65]. CD44 is also regarded as a
competent phagocytic receptor that efficiently medi-
ates pathogen recognition and phagocytosis by neutro-
phils [66,67].
Together, these findings indicate that BLV infection,

particularly BLV-infected cows with PL, may impact the
outcome of intramammary infections because the resi-
dent milk neutrophils have an enormous impact on the
elimination of bacteria by phagocytosis and the intracel-
lular production of ROS [36,56]. Thus, we believe that
BLV can affect mastitis control programs.
A feasible alternative to reduce the transmission of

BLV infection could be achieved by eliminating animals
with high proviral loads, which mainly exhibit PL instead
of AL [59,60]. Thus, our findings regarding the milk
neutrophil function in BLV-infected cows, particularly
those with PL, indicated that the elimination of PL ani-
mals may also lead to a lower probability of comorbidi-
ties, such as mastitis, which is regarded as the most
costly dairy cattle disease and is thus associated with
important economic and public health implications.
No perturbations in the percentages of T lymphocyte

subsets among the milk cells from the BLV-infected
cows were found, as was previously described for the
peripheral blood of BLV-infected cows [4,6], although
no consensus exists [2,3,8]. It is generally accepted that
the infected cells (mainly B cells) frequently co-express
CD5 and CD11b molecules [1,6]. Conversely, the present
study shows an increase in the percentage of CD5−/
CD11b− CD21+ cells (mainly B-1b cells) in the milk of
BLV-infected cows, particularly those with PL. Although
this observation is puzzling, it may lend insight into the
roles of CD5 [68] and CD11b [69] on B cells in mammary
gland immunity.
BLV infection is correlated with the inhibition of the

apoptotic process, leading to the generation of a reser-
voir of apparently latent cells [1]. This phenomenon, to-
gether with the B cell tropism of BLV, may explain the
lower percentage of milk B cells that was observed in
the BLV-infected cows, particularly those with PL, that
were undergoing apoptosis, which has been previously
described for B cells that were obtained from blood
[1,16,18,19,21,22].
In conclusion, the present study provides novel insight

into the implications of BLV infections for mammary
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gland immunity, which is mainly supported here by the
dysfunction of the milk neutrophils. Thus, this study high-
lights the importance of controlling BLV infections due to
their indirect effects, such as the higher susceptibilities of
BLV-infected cows to secondary diseases, such as mastitis,
which is the most costly disease affecting cattle.
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