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Abstract
Lucinidae clams harbor gammaproteobacterial thioautotrophic gill endosymbionts that are environmentally acquired.
Thioautotrophic lucinid symbionts are related to metabolically similar symbionts associated with diverse marine host taxa
and fall into three distinct phylogenetic clades. Most studies on the lucinid–bacteria chemosymbiosis have been done with
seagrass-dwelling hosts, whose symbionts belong to the largest phylogenetic clade. In this study, we examined the taxonomy
and functional repertoire of bacterial endosymbionts at an unprecedented resolution from Phacoides pectinatus retrieved
from mangrove-lined coastal sediments, which are underrepresented in chemosymbiosis studies. The P. pectinatus
thioautotrophic endosymbiont expressed metabolic gene variants for thioautotrophy, respiration, and nitrogen assimilation
distinct from previously characterized lucinid thioautotrophic symbionts and other marine symbionts. At least two other
bacterial species with different metabolisms were also consistently identified in the P. pectinatus gill microbiome, including
a Kistimonas-like species and a Spirochaeta-like species. Bacterial transcripts involved in adhesion, growth, and virulence
and mixotrophy were highly expressed, as were host-related hemoglobin and lysozyme transcripts indicative of sulfide/
oxygen/CO2 transport and bactericidal activity. This study suggests the potential roles of P. pectinatus and its gill
microbiome species in mangrove sediment biogeochemistry and offers insights into host and microbe metabolisms in the
habitat.

Introduction

Chemosymbiosis is widespread in marine habitats, where
endosymbiotic or episymbiotic chemolithoautotrophs use
inorganic chemical energy for the synthesis of organic
compounds that benefit their hosts [1, 2]. One of the most
ancient examples of marine chemosymbiosis is found in the
bivalve family Lucinidae [3], which has a fossil record
arguably dating back to the Silurian period [4]. Despite
being capable of suspension feeding, all living lucinids
studied to date fulfill a considerable proportion of their
nutritional needs through obligate chemosymbiotic asso-
ciations with gammaproteobacterial endosymbionts occu-
pying bacteriocytes in their gills [3]. Lucinid species
examined so far acquire their thioautotrophic endo-
symbionts from free-living environmental bacterial popu-
lations [5–9]. Enzymatic assays, stable isotope analyses,
and clone-based amplicon sequencing methods demonstrate
that lucinid endosymbionts mainly use energy derived from
the oxidation of reduced sulfur compounds to fix inorganic
carbon for their hosts [10]. Other reported functions of
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lucinid endosymbionts included mixotrophy, denitrification,
assimilation of nitrogenous compounds, and diazotrophy
[11–14].

Because of the widespread distribution of lucinids in
marine habitats, ranges in host and endosymbiont phylo-
genetic diversity, as well as the possibility that lucinids may
harbor non-thioautotrophic symbionts [15–17], the lucinid–
bacteria chemosymbiotic system has the potential to address
fundamental cellular to ecological questions about host–
symbiont interactions, cues, and communication across
individual hosts, among species, and within populations.
However, there is still relatively poor understanding of
lucinid and gill microbiome diversity and metabolic func-
tions. For instance, although 16S rRNA gene sequences of
thioautotrophic lucinid endosymbionts form a paraphyletic
group consisting of three distinct clades [10, 18], only the
genomes, transcriptomes, and proteomes of two lucinid
endosymbiont species from clade A have been sequenced
[13, 14]. Clade A symbionts are mainly associated with
diverse seagrass-dwelling lucinids, but symbiont clades B
and C are from predominately mangrove-dwelling Ano-
dontia spp. and Phacoides pectinatus, respectively [18].
Almost no diversity or functional diversity study has cen-
tered on either of these bacterial clades.

To begin to fill these gaps, our study characterizes the
metabolic repertoire of the host and gill-associated thioau-
totrophic bacterial endosymbiont from P. pectinatus Gmelin
1791 (syn= Tellina pectinata Gmelin 1791, Lucina pecti-
nata (Gmelin 1791), Anodontia pectinatus (Gmelin 1791),
Lucina jamaicensis Lamarck 1801, Lucina funiculata
Reeve 1850). Possibly the only extant species of its genus,
P. pectinatus possesses morphological features distinct from
other lucinid bivalves, such as high levels of three types of
hemoglobin in gill pigment granules, sulfur bodies, and
large lysosomes [19, 20]. Molecular phylogeny studies
place P. pectinatus as a deeply branching genus within the
Lucinidae [21] and the thioautotrophic endosymbiont dis-
tant from seagrass- or other mangrove-associated lucinid
endosymbionts [18, 22, 23]. This lucinid inhabits organic-
rich seagrass and mangrove sediments [24] and has a
widespread tropical geographic distribution that ranges
from the Caribbean Sea and Gulf of Mexico to the Atlantic
Ocean seaboard of South America to Brazil [25]. The
unusual morphological features, phylogeny, and habitat
distribution of P. pectinatus and its distinct thioautotrophic
endosymbiont belonging to clade C have led to the
hypothesis that symbiont metabolic pathways in this species
are different than in other lucinid endosymbionts [8]. To test
this hypothesis, we assessed gill microbiome diversity
within P. pectinatus using 16S rRNA gene sequencing,
quantitative PCR (qPCR), metagenomic sequencing, and
metatranscriptomic sequencing and compared the

expression profiles from P. pectinatus and its gill micro-
biome species to previously sequenced seagrass-associated
lucinid endosymbiont species from clade A, including Ca.
Thiodiazotropha endoloripes within Loripes orbiculatus
[14] and Ca. Thiodiazotropha endolucinida within Codakia
orbicularis [13].

Materials and methods

Sample collection

Phacoides pectinatus populations at Wildcat Cove, St.
Lucie County, FL, USA (Figure S1), as well as their
ecology, sediment geochemistry, and microbiology, have
previously been investigated [23, 26] and briefly described
in SI. For this study, research excursions were completed in
February 2011, June 2013, July 2014, and November 2017,
and live specimens were sieved from sediments hand-dug
to 30 cm depth, approximately 3 m from the shoreline of
Rhizophora mangle (red mangrove). Specimens were
temporarily stored in Whirl-Pak® Bags (Nasco, Fort
Atkinson, WI, USA) filled with surface water from the
habitat and maintained at ambient temperature before dis-
section. During dissection, gill and foot tissues were
separated from other body tissues. Tissues used for 16S
rRNA gene sequencing and metagenomics were dissected
within the same day of collection and fixed in 100%
molecular-grade ethanol. Tissues used for metatran-
scriptomics were dissected within 30 min of collection and
fixed in RNAlater. Tissues used for microscopy were fixed
in 2% paraformaldehyde (pH 7) made with artificial sea
water prepared using Difco™ Marine Broth 2216 formula
(Becton Dickinson and Company, Franklin Lakes, NJ,
USA) for 3 h at 4 °C prior to washing, sucrose infiltration,
storage, hematoxylin–eosin staining, and fluorescence
in situ hybridization (FISH) procedures described in
Table S1 and SI. Total nucleic acids were extracted from
partial gill and foot tissues using the Qiagen’s (Valencia,
CA, USA) DNeasy Blood and Tissue Kit (2011 and
2013 sample collection) or Allprep DNA/RNA Mini
Kit (2014 samples) after mechanical homogenization of
the tissues with a motorized pestle and mortar (Argos
Technologies, Elgin, IL, USA) or tissue grinder (Wheaton,
Millville, NJ, USA). For further lysis, the sample
was passed through a 21-gauge (0.8 mm) needle attached to
a 3 mL syringe (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA) at least ten times and incubated
at 60 °C for at least 10 min. Extracted nucleic acid con-
centrations were quantified fluorometrically with Qubit™
dsDNA HS and RNA assays (Life Technologies, Austin,
TX, USA).
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16S rRNA gene, metagenomic, and
metatranscriptomic sequencing

From the 2014 collection, 16S rRNA gene libraries of DNA
extracted from 25 P. pectinatus gills, cDNA from the gills of
four of these individuals, and DNA from the feet of three
individuals were sequenced. From the 2017 collection,
libraries of DNA and cDNA extracted from three gill samples
were sequenced. All libraries were sequenced on Illumina
Inc’s (San Diego, CA, USA) MiSeq 2 × 250 bp platform. 16S
rRNA gene library preparation procedures are described in SI.
Thirteen Illumina-compatible gill metagenomic libraries and
one foot metagenomic library were prepared using the Nex-
tera DNA Sample Preparation Kit (Illumina Inc., San Diego,
CA, USA) on 50 ng of DNA per sample (2011 and 2013
collection) and NEBNext® Ultra™ II DNA Library Prep Kit
for Illumina® on DNA fragmented with NEBNext® dsDNA
Fragmentase (New England Biolabs, Ipswich, MA, USA;
2014 collection). These libraries were sequenced on Illumi-
na’s MiSeq 2 × 150 bp (2011 collection), 2 × 250 bp plat-
forms (2013 collection), and HiSeq 2500 2 × 100 bp
(2014 specimen) platforms. To generate long reads, metage-
nomic libraries were prepared from another 2014 gill speci-
men and two 2017 gill specimens using the Nanopore’s Rapid
Sequencing Kit (Oxford Nanopore Technologies, Kidlington,
Oxfordshire, UK) and sequenced on a MinIon flowcell (R9.4
nanopores) with a MinIon Mk1B sequencer. Three gill sam-
ples collected in 2014 within a 1m2 quadrat were used for
metatranscriptomic sequencing on Illumina’s HiSeq 4000 2 ×
150 bp platform. RNAs extracted from these samples were
treated with the Ambion® Turbo DNA-free™ DNase Kit
(Life Technologies). Successful DNase treatment was con-
firmed by PCR amplification of the V9 region of bacterial 16S
rRNA genes and subsequently through read-mapping analysis
of sequenced metatranscriptomic libraries (SI). DNA-free
RNAs were purified with the RNeasy MinElute Cleanup Kit
(Qiagen). Illumina-compatible cDNA libraries were made
from purified RNAs using Epicentre’s (Madison, WI, USA)
Ribo-Zero rRNA removal Kit (bacteria) and ScriptSeq™ v2
RNA-Seq Library Preparation Kit, following the manu-
facturer’s low input protocol. The final concentration of each
library was quantified with the Qubit® dsDNA HS assay (Life
Technologies) and the average library insert size was deter-
mined with the Experion Automated Electrophoresis Station
(Bio-Rad Laboratories, Hercules, CA, USA; 2011 and 2013
collections) and the Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA; 2014 and 2017 col-
lections). Sequencing service providers are listed in SI.

Data analysis

Mothur v1.39.5 [27] was used for data processing for the
16S rRNA gene dataset. Operational Taxonomic Unit

(OTU) clustering was performed at 99% sequence identity
for higher species resolution [28] and taxonomic classifi-
cation was performed against the Silva v132 database [29].
The final dataset was subsampled to the library with the
smallest four-digit number size (n= 1269). The 16S rRNA
gene analysis pipeline and qPCR procedures used to vali-
date analysis results are documented in Table S2 and SI.
Trimmed Illumina-sequenced metagenomic reads from each
sequenced sample were individually assembled using
IDBA-UD v1.0.9 [30]. Additionally, reads from the most
complete gammaproteobacterial assembly were co-
assembled with unprocessed Nanopore reads using the
hybridSPAdes algorithm [31] of the SPAdes genome
assembler (v3.11.1). For each assembly, contigs >1500 bp
long were binned with MetaBat v0.32.4 using the ensemble
binning approach [32], after read mapping with Bowtie2
v2.2.7 [33] (very sensitive local and dovetail mode) and
SAMtools v0.1.19 [34]. All metagenome-assembled gen-
omes (MAGs) were annotated with NCBI’s Prokaryotic
Genome Annotation Pipeline [35]. MAGs with >90%
completeness were also annotated with Rapid Annotation
using Subsystem Technology (RAST) FIGfam release 70
[36]. Methods for the evaluation of sequence and MAG
quality, read trimming, sequencing depth analyses,
sequence comparisons with published reference genomes,
and PCR validation of sequencing results are in Table S2
and SI.

Metatranscriptomic assembly and downstream analyses
were performed with Trinity v2.5.1 [37]. Trimmed reads
from all three metatranscriptomic libraries were co-
assembled into one metatransciptome de novo with Tri-
nity’s default parameters (k= 20). The co-assembly stan-
dardizes transcript IDs, lengths, and clusters across libraries
for efficient downstream quantification and cross-sample
comparisons [37]. Trinity’s Chrysalis module clusters
transcripts with at least k−1 bases overlap and with suffi-
cient reads spanning the join across both transcripts, and the
Butterfly module refines the clustering and uses these
transcript clusters as proxy for genes [37, 38]. Reads were
mapped to the co-assembly using Bowtie2 v2.2.7’s [33] no-
mixed, no-discordant, end-to-end options reporting up to
200 alignments per read (-k 200) and disallowing gaps
within 1000 nucleotides of read extremes (-gbar 1000).
Isoform and gene-level abundances were estimated by
RNA-Seq Expectation-Maximization (RSEM) that max-
imizes the probability of observed variables, including read
lengths, quality scores, and sequences based on RSEM’s
directed graph statistical model [39]. The probability value
for each isoform/gene was divided by the effective tran-
script/gene length, which is the average number of possible
start positions of a transcript of a given length or the
abundance-weighted average effective transcript lengths of
a gene’s isoforms [39]. The resulting length-normalized
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value for each transcript/gene was divided by the sum of
length-normalized values for all transcripts/genes in each
sample to calculate the transcript fraction value, which was
then multiplied by 106 to derive the transcript per million
(TPM) measure [39]. For cross-sample comparisons, TPM
values were further normalized with the trimmed means of
M-values (TMM) factor that minimizes log-fold changes
across samples [40] using the edgeR Bioconductor package
[41].

All assembled host and bacterial transcripts, as well as
unbinned contigs from metagenomic assemblies, were
annotated with Trinotate v3.1.1 (https://trinotate.github.io/),
which uses the manually curated but less representative
Swissprot [42] database as reference. rRNA transcripts were
predicted with SortMeRNA v2 [43] using SILVA’s v119
[29] collection of archaeal, bacterial, and eukaryotic 16S
rRNA, 23 S rRNA, 18 S rRNA, and 28 S rRNA gene
sequences as references. Host and bacterial genes of interest
were analyzed at the level of transcript clusters loosely
equivalent to genes. To map transcript clusters to symbiont
genes, a pan-genome for the thioautotrophic endosymbiont
from P. pectinatus, named Candidatus Sedimenticola
endophacoides (explained in the Results section), was cre-
ated by extracting and concatenating nucleotide sequences
of RAST-annotated PEGs and RNAs from six >90%
complete MAGs, followed by de-duplication with CD-HIT
v4.6 [44] at a global sequence identity threshold of 100%.
The de-duplicated dataset was searched against the Trinity
assembly using NCBI’s Basic Local Alignment Search Tool
(BLAST) v2.6.0+ local blastn package [35, 45] and only
the top hit was reported (-max_target_seqs 1). Similar local
blastn searches were performed on other MAGs of interest
for transcript cluster to gene mapping. Functions of tran-
script clusters of interest were inferred by comparing Tri-
notate’s transcript annotations with web blastp, blastn, or
blastx search results [45] against the more representative
NCBI’s non-redundant (nr) protein sequence or nucleotide
(nt) databases [35] using the same 10−3 e-value threshold as
Trinotate. For each transcript within a transcript cluster, a
blastp search was performed if a likely peptide sequence
was predicted by Transdecoder v5.1.0 (http://transdecoder.
github.io/) based on a minimum open reading frame (ORF)
length and a log-likelihood score related to the reading
frame where the ORF was located. If the blastp search
returned negative results or if no likely peptide sequence
was predicted for a transcript, then blastn and blastx sear-
ches were performed instead. Functions of transcript clus-
ters mapping to more than one gene were assigned based on
annotations of transcript(s) within the cluster with the
highest TMM-normalized TPM value(s). A transcript clus-
ter was considered multi-mapping if more than one tran-
script within the cluster shared high TMM-normalized TPM
values but different predicted functions and their

corresponding genes were not adjacent to each other in the
reference MAG.

Results

Site characterization

Live P. pectinatus had clumped distributions at Wildcat
Cove in all sample years, with the highest concentrations
being near the mangrove-lined coast where total organic
carbon content in the sediment was highest [26]. Overall,
live abundances averaged over 40 individuals per square
meter [26]. Porewater dissolved sulfide and oxygen con-
centrations were measured and reported by Doty [26] from
low-flow fluid sampling of piezometers installed near to
where specimens were recovered, according to previously
described methods [46]. Dissolved sulfide concentrations at
Wildcat Cove (18–56 μmol/L) were an order of magnitude
higher than concentrations measured from intertidal zone
porewater occupied by the lucinid Lucinoma borealis [47].
Dissolved oxygen concentrations ranged from 78 to 125
μmol/L at quadrats adjacent to where P. pectinatus were
collected [26].

Gill microbiome diversity

To examine P. pectinatus microbiome diversity, we
sequenced 16S rRNA genes and used metagenomic and
metatranscriptomic content from gill and foot samples col-
lected in 2011, 2014, and 2017. All amplicon-sequenced
DNA and cDNA samples were dominated by one gamma-
proteobacterial Sedimenticola-like species (OTU1), occur-
ring at average 84 ± 11% relative abundance (Fig. 1a).
MAGs of this species were binned from 14 separate
assemblies and three co-assemblies (Table 1) and shared
100% sequence identity in the 16S rRNA gene V4 region
with OTU1, as well as 99.8 ± 0.4% average nucleotide
identity (ANI) and 99 ± 1% average amino acid identity
(AAI; Figure S2a) with each other. These gammaproteo-
bacterial MAGs were at least 20% smaller, and with at least
11% higher G+C content, than previously sequenced clade
A thioautotrophic lucinid endosymbiont species Ca. Thio-
diazotropha endoloripes [14] and Ca. Thiodiazotropha
endolucinida [13] and Sedimenticola spp. [48, 49, 118]
(Table 1). FISH using a newly designed SED642 probe
targeting the 16S rRNA gene of this Sedimenticola-like
species confirmed that the P. pectinatus gill bacteriocytes
contained cells that matched the gammaproteobacterial
MAGs (Figure S3). Results of phylogenetic analyses using
16S rRNA gene sequences (Figure S4) and ten single-copy
marker genes (Figure S2b) corroborated previous reports on
the distinct phylogenetic position of the thioautotrophic P.
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pectinatus endosymbiont in relation to other lucinid sym-
biont species [18, 22, 23]. The Sedimenticola-like MAGs

shared 71 ± 4% ANI and 64 ± 1% AAI with sequenced
clade A lucinid symbiont species, 76 ± 7% ANI and 59 ±

Fig. 1 Relative abundances of a bacterial 16S rRNA gene OTUs and
Good’s estimator of coverage [114], b copy numbers per ng of DNA
or cDNA (%) of Sedimenticola-like OTU1, Kistimonas-like OTU2,
and Spirochaeta-like OTU5 determined by qPCR, and c normalized
average coverage depths with standard error bars mapped to Ca.

Sedimenticola endophacoides, Kistimonas-like, and Spirochaeta-like
MAGs in P. pectinatus foot and gill specimens/libraries. “R” denotes
RNA-derived cDNA specimens in a, b and metatranscriptomic
libraries in c. Foot-associated Christensenella-like OTU3 indicated
with “#” in a was classified using 0% bootstrap confidence
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5% AAI with other marine thioautotrophic symbionts, and
76 ± 2% ANI and 69 ± 1% AAI to free-living Sedimenticola
spp. [48, 49, 118] (Figure S2a). Based on the 93–95% ANI
and 85–90% AAI boundaries proposed in Rodriguez-R and
Konstantinidis [50], the Sedimenticola-like MAGs were
likely a species separate from sequenced clade A lucinid
symbionts, marine thioautotrophic symbionts, and Sedi-
menticola spp. Because the Sedimenticola-like MAGs
shared the highest AAI with Sedimenticola spp. and the
observed AAI values fall within the proposed genus
boundary (55–60%) [50], we propose the name Candidatus
Sedimenticola endophacoides for the P. pectinatus endo-
symbiont, where “endophacoides” refers the host associa-
tion (“endo-” meaning “within”).

Besides the thioautotrophic symbiont species, we also
observed lower relative abundances of a gammaproteo-
bacterial Kistimonas-like OTU (average 13 ± 12%; OTU2)
belonging to the order Oceanospirillales in all amplicon-
sequenced DNA and cDNA samples and a Spirochaeta-like
OTU (average 0.2 ± 0.2%; OTU5) in 25 out of the 33 gill
DNA and cDNA samples (Fig. 1a). The transcriptional
activity of the Sedimenticola-like, Kistimonas-like, and
Spirochaeta-like species was confirmed by absolute qPCR
quantification, where copy numbers of the OTUs in mat-
ched DNA and cDNA samples were consistent with their
OTU relative abundances (Fig. 1b). Deep metagenomic
sequencing of one 2014 P. pectinatus gill sample also
binned a Kistimonas-like MAG (3% of reads), a Spir-
ochaeta-like MAG (0.4% of reads), a Ca. Sedimenticola
endophacoides MAG (58% of reads; Table 1), and 12 other
bins with 0% completeness and no taxonomic classification.
These three MAGs contained 16S rRNA gene sequences
with perfect matches to their corresponding OTU sequen-
ces. Unbinned contigs comprised 89% (527,385/591,741)
of all assembled contigs from this sample, out of which only
11% (59,232/527,385) had predicted protein-coding regions
(SI). Reads from all sequenced metagenomic and meta-
transcriptomic libraries could be mapped to MAGs of the
Kistimonas-like (0.4 ± 0.4% of MiSeq metagenomic reads
and 0.1 ± 0.04% of metatranscriptomic reads) and Spir-
ochaeta-like species (1 ± 0.3% of MiSeq metagenomic
reads and 0.008 ± 0.003% of metatranscriptomic reads) at
lower sequencing depths compared to the Ca. Sedimenti-
cola endophacoides MAG (8 ± 4% of MiSeq metagenomic
reads and 1 ± 0.6% of metatranscriptomic reads; Fig. 1c).

MAGs of Ca. Sedimenticola endophacoides, the Kisti-
monas-like species, and the Spirochaeta-like species shared
<70% ANI and <56% AAI with each other (Figure S2a).
Phylogenetic analyses using 16S rRNA gene sequences
clustered the Kistimonas-like OTU sequences with poten-
tially pathogenic K. scapharcae from a dead ark clam
Anadara broughtonii [51], skin-associated K. asteriae from
the starfish Asterias amurensis [52], and gill-associated

Oceanospirillales from the limid bivalve Acesta excavata
[53] (Figure S4). The Spirochaeta-like OTU sequence was
most closely related to spirochete endosymbionts in the
gutless marine worm Olavius [54, 55] and loosely asso-
ciated with spirochete sequences retrieved from a L. kazani-
like lucinid [56] (Figure S4). Genomic sequences of these
closest relatives of both species are not yet available in
public databases. Foot microbiome diversity in P. pectina-
tus is described in SI.

Metagenomic and metatranscriptomic analyses

Sequenced gill cDNA libraries showed consistent read
coverages of the co-assembled metatranscriptome and
pairwise Pearson correlations of >0.8 across replicates
(Figure S5). A total of 1,563,787 transcripts were assem-
bled, out of which 85% (average length 364 ± 262 bp) were
without protein-coding region and functional annotation
(SI). In all, 11% of the total transcripts (average length
989 ± 1181 bp) could be mapped to gene/protein homologs.
These were grouped into 91,465 transcript clusters (loosely
equivalent to genes), from which a subset (3%) mapped to
the bacterial MAGs of interest. As such, it should be noted
that the quality of gene/transcript annotations is heavily
dependent on the completeness of the MAGs and the
reference databases used. Although we made every effort to
search for absent genes and pathways in the unbinned gill
metagenomes, incompletely binned MAGs used to make
inferences may still contain missing genes and functions.
The lack of host genomic data and the high abundances of
unclassifiable sequences in the gill metagenomes and
metatranscriptomes imply that functional analyses can be
skewed toward annotated genes/transcripts that would
overlook novel genes [57]. Also, gene/transcript annota-
tions based on homology may not be accurate predictors of
reaction mechanisms [57] and even function (in the case of
novel paralogs). Transcript quantification can also be
influenced by swift changes in mRNA expression occurring
between sample collection and fixation, as well as mRNA
turnover that causes rapidly degrading mRNAs to exhibit
inaccurately low transcripts per million (TPM) values.

Host-related functions

Host-related rRNA gene transcript clusters made up two
thirds of the 30 most abundantly expressed transcripts in the
gill metatranscriptomes (Figure S6). Highly expressed
eukaryotic and/or molluscan protein-coding genes included
those encoding the respiratory cytochrome c oxidase sub-
units, hemoglobins 1 and 2, and actin (Fig. 2). A carbonic
anhydrase transcript cluster related to the mangrove killifish
(Kryptolebias marmoratus) was the 11th most abundantly
expressed in the gill metatranscriptome (average 696 ± 260
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TPM; Fig. 2a), while another molluscan transcript cluster
encoding for a nacrein-like protein with putative carbonic
anhydrase function [58] was expressed in only 1 out of the
3 specimens at 0.1 TPM. The top 30 most abundant mol-
luscan transcript clusters also included transcripts encoding
hemoglobin 3 (average 104 ± 25 TPM), ribosomal proteins
(average 32 ± 18 TPM), other cytoskeletal proteins (tubulin
and tropomyosin; average 33 ± 19 TPM), and lysozyme 3
(average 19 ± 20 TPM; Fig. 2b). Similarly, transcript clus-
ters matching gene ontology [59] terms relevant to hemo-
globin, cytoskeletal, and ribosomal functions were among
the most abundant in the phylum Mollusca (Figure S7).
Transcript clusters involved in the defense response to
bacteria (GO:0042742; Figure S7) were potentially relevant
to symbiosis. These included molluscan transcript clusters
encoding lysozyme 1 (average 6 ± 4 TPM), lysozyme 3, an
antibacterial glycoprotein aplysianin-A [60]/muscosal gly-
coprotein achacin [61] (average 7 ± 2 TPM), the H2O2-
generating flavoenzyme L-amino oxidase [62] (average 7 ±
1 TPM), and nitric oxide synthase (average 0.6 ± 1 TPM).

Endosymbiont functions

Sixteen of the 30 most abundant bacteria-related transcript
clusters could be mapped to Ca. Sedimenticola endopha-
coides, while 8 mapped to the species’ relatives (Fig. 3a).

Many of these were housekeeping and stress response genes
(Fig. 3 and SI). Candidatus Sedimenticola endophacoides
expressed lithoautotrophic genes involved in sulfur oxida-
tion, hydrogen oxidation, and carbon fixation (Figs. 3–5).
Transcript clusters involved in thiotrophic sulfur oxidation
(sox) and reverse dissimilatory sulfite reductase enzyme
system-adenylylsulfate reductase-sulfate adenylyltransferase
(dsr-apr-sat) pathways [63, 64] were detected in the tran-
scriptome at TPM values between 0.07 (DsrK) and 55
(SoxZ; Figs. 3–4). Variants of sulfide:quinone oxidor-
eductase (Sqr), hydrogenases, and ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO) genes utilized by che-
mosynthetic marine symbionts differed across lineages
(Table 2), and Ca. Sedimenticola endophacoides expressed a
unique combination of type VI Sqr (average 0.09 ± 0.1
TPM), group 1 membrane-bound (average 0.2 ± 0.2 TPM)
and group 2b soluble NAD-dependent (average 2 ± 2 TPM)
Ni-Fe hydrogenases, and type II RuBisCO (average 0.08 ±
0.06 TPM) genes (Figs. 4 and 5). Expressed heterotrophy-
related genes included those involved in dicarboxylate
transport (average 0.2 ± 0.3 TPM) and a complete tri-
carboxylic acid (TCA) cycle (average 0.4 ± 0.8 TPM;
Fig. 5a). Candidatus Sedimenticola endophacoides is cap-
able of respiration on oxygen and nitrogenous compounds
(average 0.2 ± 0.4 TPM; Fig. 3b). However, compared to
other chemosynthetic marine symbionts that utilize a variety

Fig. 2 Log2-transformed TMM-normalized TPM of gene products of
the 30 most abundantly expressed protein-coding transcript clusters a
mapped to any species and b mapped to the phylum Mollusca in

sequenced P. pectinatus gill metatranscriptomes (specimens R1, R2,
and R3). UDP uridine diphosphate, ORF open reading frame
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of terminal oxidases for aerobic respiration, we only detec-
ted genes and transcript clusters encoding subunits for the
cbb3-type terminal oxidase (average 0.4 ± 0.5 TPM) in Ca.
Sedimenticola endophacoides (Table 2). Candidatus

Thiodiazotropha spp. are capable of nitrogen fixation and
assimilatory nitrate and nitrite reduction [13, 14], and rele-
vant transcripts mapped to Ca. Thiodiazotropha endoloripes,
but not Ca. Sedimenticola endophacoides, were identified in

Fig. 3 Log2-transformed TMM-normalized TPM of gene products of
a the 30 most abundantly expressed protein-coding transcript clusters
mapped to species (square brackets) from the domain Bacteria and
b morphological features and major metabolic pathways predicted in
Ca. Sedimenticola endophacoides. In b, the transcript cluster mapped
to a non-thioautotrophic gammaproteobacterial species (Endozoico-
monas numazuensis) is highlighted in green while transcript clusters
mapped to non-gammaproteobacterial taxa are highlighted in pink.
UbiE ubiquinone/menaquinone biosynthesis C-methyltransferase,
FtsH ATP-dependent zinc metalloprotease, Hyb membrane bound [Ni-
Fe] hydrogenase 2, Hup uptake hydrogenase, Hox soluble NAD-
dependent hydrogenase, S0 elemental sulfur, Fcc flavocytochrome c-
sulfide dehydrogenase, Sqr sulfide:quinone oxidoreductase, Sox sulfur
oxidation enzyme complex, Dsr reverse dissimilatory sulfite reductase

enzyme system, Apr adenylylsulfate reductase, APS adenosine-5’-
phosphosulfate, Sat sulfate adenylyltransferase, ABC ATP-binding
cassette transporters, GS glutamine synthetase, GOGAT glutamine
oxoglutarate aminotransferase (glutamate synthase), Nap periplasmic
dissimilatory nitrate reductase, Nir cytochrome nitrite reductase cd1,
Nor nitric oxide reductase, Nos nitrous oxide reductase, TBDT TonB-
dependent transporter, TonB TonB-ExbB-ExbD complex, FeoB fer-
rous iron transport protein, Pst phosphate specific transport, Pho
phosphate regulon, PolyP polyphosphate granule, ActP acetate per-
mease, TRAP tripartite ATP-independent periplasmic transport,
RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase, TCA
cycle tricarboxylic acid cycle, IM inner membrane, OM outer
membrane
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the gill metatranscriptomes at average 0.3 ± 0.3 TPM
(Table S4 and SI). Key genes in these pathways were,
however, not detected in the sequenced P. pectinatus gill
metagenomes (Tables S4–S5 and SI), suggesting that the
transcripts were rare. MAGs of Ca. Sedimenticola endo-
phacides encoded and expressed genes for urease and the
urease accessory protein UreE (0.09 ± 0.1 TPM), urea ABC
transporter (0.2 ± 0.2 TPM), and ammonium transporter
(average 0.06 ± 0.1 TPM; Figure S8). Transcripts involved
in type I, II, and possibly type III and VI, secretion systems
were also observed in this species (Figures S9 and SI).
Particularly, like Ca. Thiodiazotropha spp., Ca. Sedimenti-
cola endophacoides may utilize the type I secretion system
[65] potentially for the secretion of hemolysin A (average 1
± 1 TPM), colicin V (average 0.4 ± 0.4 TPM), and repeats in
toxin (average 0.2 ± 0.03 TPM; Figure S9). A transcript
cluster encoding a hypothetical filamentous hemagglutinin
N-terminal domain-containing iron-responsive protein

(average 104 ± 80 TPM) secreted by the two-partner secre-
tion system [66] was also the fifth most abundant in the
bacterial metatranscriptomes (Fig. 3a). Genes to combat
H2O2 stress, including those encoding the hydrogen
peroxide-inducible genes activator (average 0.3 ± 0.3 TPM),
superoxide dismutase (average 0.05 ± 0.06 TPM), and an
alkyl hydroperoxide reductase subunit C-like protein (aver-
age 0.7 ± 0.8 TPM) were also expressed in Ca. Sedimenti-
cola endophacoides. Other genetic functions in Ca.
Sedimenticola endophacoides are presented in Table S6
and SI.

Other gill microbiome functions

Highly expressed protein-coding transcript clusters homo-
logous to protein sequences from other non-thioautotrophic
bacterial taxa, including Tepidimonas spp., Persicobacter
sp., and Bacillus ginsengihumi, were also observed in the

Fig. 4 Log2-transformed TMM-normalized TPM of gene products of
lithotrophy-related transcript clusters mapped to Ca. Sedimenticola
endophacoides. Transcript clusters with zero TPM values are repre-
sented as white cells. Sqr sulfide:quinone oxidoreductase, Fcc flavo-
cytochrome c-sulfide, Sat sulfate adenylyltransferase, Apr
adenylylsulfate reductase, Tus sulfur carrier proteins homologous to
some Dsr proteins, Hyp hydrogenase pleiotropy operon involved in the

biosynthesis and maturation of [Ni-Fe] hydrogenases, Hup regulatory
uptake hydrogenase, Hox soluble NAD-dependent hydrogenase, Hyd
periplasmic Ni-Fe hydrogenase, HdrA/MVH heterodisulfide reductase/
methylviologen reducing hydrogenase, Hyb membrane-bound Ni-Fe
hydrogenase 2, HyaC membrane-bound Ni-Fe-hydrogenase I cyto-
chrome b subunit
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Ta
bl
e
2
C
om

pa
ri
so
n
of

ge
no

m
ic

fe
at
ur
es

am
on

g
C
a.

S
ed
im

en
tic
ol
a
en
do

ph
ac
oi
de
s,
fr
ee
-l
iv
in
g
Se
di
m
en
tic
ol
as
pp

.
[4
8,

11
8]
,
an
d
ba
ct
er
ia
l
sy
m
bi
on

ts
,
in
cl
ud

in
g
cl
ad
e
A

th
io
au
to
tr
op

hi
c
lu
ci
ni
d

sy
m
bi
on

ts
th
e
lu
ci
ni
d
th
io
au
to
tr
op

hi
c
sy
m
bi
on

t
cl
ad
e
A

[1
3,

14
],
a
ve
si
co
m
yi
d
cl
am

gi
ll
sy
m
bi
on

t
(C
a.

R
ut
hi
a
m
ag
ni
fi
ca
)
[1
19
],
a
so
le
m
yi
d
cl
am

gi
ll
sy
m
bi
on

t
[9
7]
,
ba
th
ym

od
io
lin

m
us
se
l
gi
ll

sy
m
bi
on

ts
(B
at
hy
m
od

io
lu
s
se
pt
em

di
er
um

an
d
B
at
hy
m
od

io
lu
s
th
er
m
op

hi
lu
s)

[7
5,

12
0]
,d

ee
p-
se
a
tu
be
w
or
m

tr
op

ho
so
m
al

sy
m
bi
on

ts
(R
id
ge
ia

pi
sc
es
ae
,R

ift
ia

pa
ch
yp
til
a,

an
d
T
ev
ni
a
je
ri
ch
on

an
a)

[9
3,
12

1]
,a

m
ar
in
e
ne
m
at
od

e
ec
to
sy
m
bi
on

t(
C
a.

T
hi
os
ym

bi
on

on
ei
st
i)
[1
4]
,a
nd

a
de
ep
-s
ea

sc
al
y-
fo
ot

sn
ai
le
so
ph

ag
ea
lg

la
nd

sy
m
bi
on

t[
98

].
‘+

’
de
no

te
s
a
fe
at
ur
e
an
no

ta
te
d
in

a
ge
no

m
e,
w
he
re
as

‘−
'd

en
ot
es

a
fe
at
ur
e
no

t
ye
t
se
qu

en
ce
d
in

a
ge
no

m
e

F
un

ct
io
n

C
a.

S
ed
im

en
tic
ol
a

en
do

ph
ac
oi
de
s

S.
th
io
ta
ur
in
i
S.

se
le
na

tir
ed
uc
en
s

C
a.

T
hi
o-

di
az
ot
ro
ph

a
en
do

lo
ri
pe
s

C
a.

T
hi
o-

di
az
ot
ro
ph

a
en
do

lu
ci
ni
da

C
a.

R
ut
hi
a

m
ag
ni
fi
ca

So
le
m
ya

ve
lu
m

sy
m
bi
on

t
B
at
hy
m
od

io
lu
s

sp
p.

sy
m
bi
on

ts
D
ee
p-
se
a

tu
be
w
or
m

sy
m
bi
on

ts

C
a.

T
hi
os
ym

bi
on

on
ei
st
i

C
ry
so
m
al
lo
n

sq
ua

m
ife
ru
m

sy
m
bi
on

t

S
ul
fu
r

ox
id
at
io
n

S
qr

ty
pe

V
I

S
qr

ty
pe

I
an
d
V
I

S
qr

ty
pe

I,
II
I,

an
d
V
I

S
qr

ty
pe

I
S
qr

ty
pe

I
S
qr

ty
pe

I
an
d
V
I

S
qr

ty
pe

I

H
yd

ro
ge
n

ox
id
at
io
n

G
ro
up

1
an
d
2b

(N
A
D
-d
ep
en
de
nt
)
N
i-
F
e

hy
dr
og

en
as
e

G
ro
up

1
an
d
2a

N
i-
F
e

hy
dr
og

en
as
e

−
G
ro
up

1
an
d

2b
(N

A
D
-

de
pe
nd

en
t)
N
i-

F
e

hy
dr
og

en
as
e

G
ro
up

1
an
d
2a

N
i-
F
e

hy
dr
og

en
as
e

−
G
ro
up

1
an
d

2a
N
i-
F
e

hy
dr
og

en
as
e

C
ar
bo

n
fi
xa
tio

n
R
uB

is
C
o
II

R
uB

is
C
O

Ia
q
an
d
II

R
uB

is
C
o
Ia
q

R
uB

is
C
o
Ia
q

an
d
II

R
uB

is
C
O

II
R
uB

is
C
O

Ia
q

R
uB

is
C
O

Ia
q

R
uB

is
C
O

II
R
uB

is
C
O

Ia
q

R
uB

is
C
O

Ia
q

an
d
II

N
itr
og

en
fi
xa
tio

n
−

+
−

+
+

−
−

−
−

+
−

A
ss
im

ila
to
ry

ni
tr
at
e
an
d

ni
tr
ite

re
du

ct
io
n

−
−

−
+

−
−

−
+

+
+

+

U
re
a

hy
dr
ol
ys
is

+
+

−
+

−
−

+
−

−
+

−

O
xy

ge
n

re
sp
ir
at
io
n

cb
b3

-t
yp

e
te
rm

in
al
ox

id
as
e
cb
b3

,
aa
3,

an
d
cy
to
ch
ro
m
e
d

ub
iq
ui
no

l
ox

id
as
es

cb
b3

-
an
d
aa
3-
ty
pe

te
rm

in
al

ox
id
as
es

cb
b3

,
aa
3,

an
d

cy
to
ch
ro
m
e
d

ub
iq
ui
no

l
ox

id
as
es

S
qr

su
lfi
de
:q
ui
no

ne
ox

id
or
ed
uc
ta
se
,
R
uB

is
C
O

ri
bu

lo
se
-1
,5
-b
is
ph

os
ph

at
e
ca
rb
ox

yl
as
e/
ox

yg
en
as
e

912 S. J. Lim et al.



gill metatranscriptomes (Fig. 3a). A transcript cluster
encoding a hypothetical DNA starvation/stationary phase
protection protein from Endozoicomonas numazuensis, a
relative of the Kistimonas-like species, was also identified
(Fig. 3a). Seven of the 30 most abundant transcript clusters
mapped to the Kistimonas-like species encoded transposases
(average 3 ± 4 TPM; Fig. 6a). Two transcript clusters
encoding poly(hydroxyalcanoate) granule-associated protein
(phasin) involved in the fermentative synthesis of poly-
hydroxyalkanoate storage granules [67] were also highly
expressed in the species (average 1 ± 1 TPM; Fig. 6a).
Heterotrophy-related genes associated with other fermenta-
tion processes were expressed by the species at lower
average TPM values of 0.09 ± 0.08, along with TCA cycle
genes (average 0.2 ± 0.3 TPM; Fig. 5b and Fig. 6c). Tran-
script clusters linked to fatty acid catabolism and synthesis,
including those involved in the glyoxylate cycle (average
0.4 ± 0.5 TPM) [68], methylcitrate cycle (average 0.08 ± 0.2
TPM) [69, 70], and the branched-chain alpha-keto acid
dehydrogenase complex (BCKDH complex; average 0.1 ±
0.1 TPM) [71, 72], were also observed (Fig. 5b). A transcript
cluster encoding a type VI secretion system-associated
protein (average 0.5 ± 0.5 TPM) was among the most

abundant in the species’ transcriptomes (Fig. 6a). The Kis-
timonas-like species likely respires aerobically with both
cbb3-type cytochrome c oxidase (average 0.07 ± 0.07 TPM)
and cytochrome bd ubiquinol oxidase (average 0.2 ± 0.3
TPM). For nitrogen assimilation (Fig. 6c), only two genes
encoding NAD(P)H-dependent assimilatory nitrite reductase
(average 0.02 ± 0.03 TPM; consistent with PCR results
in SI) and type I glutamine synthetase (average 0.06 ± 0.1
TPM) were expressed in the species.

The most abundant transcript clusters mapped to the
~78% complete MAG of the lower abundance Spirochaeta-
like species encoded transporters for ribose (average 0.2 ±
0.2 TPM) and oligopeptide (average 0.1 ± 0.2 TPM;
Fig. 6b). Besides ribose, the species could potentially utilize
other carbon sources through transcripts encoding sugar
ABC transporter substrate-binding protein (average 0.09 ±
0.02 TPM), chitinase (average 0.06 ± 0.1 TPM), glycoside
hydrolase (average 0.05 ± 0.08 TPM), and C4-dicarboxylate
ABC transporter substrate-binding protein (average 0.05 ±
0.08 TPM; Fig. 5c). Other genetic functions in the Kisti-
monas-like species and Spirochaeta-like species are pre-
sented in Fig. 6, Tables S6 and SI.

Fig. 5 Log2-transformed TMM-normalized TPM of transcript clusters
encoding gene products involved in carbon metabolism mapped to
a Ca. Sedimenticola endophacoides, b the Kistimonas-like species,
and c the Spirochaeta-like species. Transcript clusters with zero TPM
values are represented as white cells. TRAP tripartite ATP-

independent periplasmic transport, TCA cycle tricarboxylic acid
cycle, HMP hexose monophosphate shunt, Dct dicarboxylate transport
proteins, Cbb proteins encoded by the Calvin–Bassham–Benson cycle
operon, BCKDH complex branched-chain alpha-keto acid dehy-
drogenase complex, LacI lactose operon repressor
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Discussion

Systems-level approaches utilizing next-generation
sequencing technologies successfully reveal host–microbe
and microbe–microbe interactions in different invertebrate
symbioses [73–76] but have not been widely applied to
lucinid–bacteria chemosymbioses. Currently, the lack of
genomic, transcriptomic, and proteomic data for lucinids
hosting gammaproteobacterial clades B and C thioauto-
trophic endosymbionts results in a poor understanding of
the metabolism, inter- and intra-species diversity, and
molecular interactions between these partners that may
impact their surrounding coastal habitat and other organ-
isms in the environment. In this study, we focused on
describing the gill microbiomes of the mangrove-dwelling
P. pectinatus that hosts the poorly characterized clade C

lucinid endosymbiont species. This is the first investigation
to describe the functional repertoire of (1) a lucinid sym-
biont species belonging to clade C, (2) a lucinid clam, and
(3) other bacterial species in a lucinid gill microbiome. Our
comparative genomics analyses showed thioautotrophy,
respiration, and nitrogen assimilation metabolic differences
among the clade C P. pectinatus endosymbionts, clade A
lucinid symbionts, and other thioautotrophic marine sym-
bionts, while host transcriptomes revealed candidate genes
putatively involved in symbiont/microbiome selection,
regulation, and nutrient transfer. Metagenomic and meta-
transcriptomic analyses also uncovered consistency among
members of the gill microbiome, including a Kistimonas-
like species and a Spirochaeta-like species that have pre-
viously been associated with a variety of marine inverte-
brates but not yet been comprehensively studied in lucinid

Fig. 6 Log2-transformed TMM-normalized TPM of gene products of
the 30 most abundantly expressed protein-coding transcript clusters
mapped to a the Kistimonas-like species and b the Spirochaeta-like
species and major metabolic pathways predicted in c the Kistimonas-
like species and d the Spirochaeta-like species. Transcript clusters
with zero TPM values in a, b are represented as white cells. MFS
major facilitator superfamily transporter, Nas assimilatory nitrate
reductase, Nit assimilatory nitrite reductase, GS glutamine synthetase,

GOGAT glutamine oxoglutarate aminotransferase (glutamate syn-
thase), Fd-GOGAT ferrodoxin-dependent glutamate synthase, Pst
phosphate-specific transport, Pho phosphate regulon, PolyP polypho-
sphate granule, TBDT TonB-dependent transporter, ABC ATP-
binding cassette transporters, DcuB C4-dicarboxylate uptake family
transporter, SDH succinate dehydrogenase, FRD fumarate reductase,
TCA cycle tricarboxylic acid cycle, TRAP tripartite ATP-independent
periplasmic transport, ECF energy-coupling factor transporter
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clams. Additional insights into the lucinid-bacteria chemo-
symbiosis is now possible, and these findings may help in
species conservation, habitat management [77–79], and
even in fisheries productivity [80], which are areas of
ongoing research.

Compared to previously sequenced lucinid clade A
endosymbiont species and other thioautotrophic symbionts,
Ca. Sedimenticola endophacoides encoded a unique com-
bination of low-affinity type VI Sqr that functions best at
high sulfide concentrations [81, 82], form II RuBisCO that
is less efficient at discriminating between oxygen and CO2

[83], and the high affinity cbb3-type terminal oxidase that
performs best at low oxygen concentrations [84]. These
genomic differences suggest that Ca. Sedimenticola endo-
phacoides experiences a more oxygen-poor extracellular
and/or intracellular environment compared to Ca. Thiodia-
zotropha spp. Although pore water sulfide concentrations at
Wildcat Cove were higher than previous studies [47], pore
water dissolved oxygen concentrations were similar to those
from sub-tropical coastal mangroves [85] and seagrass rhi-
zomes [86] that have the potential to harbor lucinids. Sulfide
and oxygen levels in the clam gills are likely regulated
through hemoglobins, which can be partially saturated with
oxygen [87]. As such, sulfide-reactive hemoglobin 1, which
has a higher oxygen dissociation rate than oxygen-reactive
hemoglobins 2 and 3, may be confined to the symbiotic
mollusc gills [88]. In support of previous literature, we
observed high expression levels of host-related hemoglobin
1, 2, and 3 genes responsible for sulfide and oxygen
transport [88–90]. Despite genomic evidence for the main-
tenance of low intracellular oxygen that would be con-
ducive for nitrogen fixation, which can contribute to the
lucinid’s diet and seagrass health [13, 14, 91], Ca. Sedi-
menticola endophacoides, unlike Ca. Thiodiazotropha spp.,
is likely incapable of diazotrophy. In lieu of nitrogen fixa-
tion, we speculate that Ca. Sedimenticola endophacoides
may utilize urea and ammonium as its nitrogen source
because these transcripts were detected.

Expression levels of autotrophy-related transcripts
encoding RuBisCO and Calvin cycle enzymes in relation to
other transcripts were much lower for Ca. Sedimenticola
endophacoides than previously reported in Ca. Thiodiazo-
tropha endoloripes [14] and other symbiotic bivalve species
that expressed RuBisCO form Iaq [75, 92], where these
transcripts were among the most abundant in the tran-
scriptomes. Low RuBisCO protein levels (~1%) were
similarly observed in the tubeworm Riftia pachyptila
thioautotrophic symbiont, which was discovered to produce
proteins involved in an additional oxygen-sensitive reduc-
tive TCA cycle [93–95]. Although Ca. Sedimenticola
endophacoides expressed genes encoding 2-oxoglutarate
oxidoreductase that may reverse the 2-oxoglutarate to
succinyl-CoA step in the TCA cycle, we did not identify

any gene for citrate lyase or citryl–coenzyme A synthetase
subunit that potentially converts citrate to oxaloacetate or
acetate [93, 95]. Mixotrophy has previously been inferred in
Ca. Thiodiazotropha endoloripes [14], as well as thioauto-
trophic symbionts in a variety of other marine organisms
[96–98], and is a likely possibility for Ca. Sedimenticola
endophacoides because of encoded and expressed genes
associated with the dicarboxylate transport and TCA cycle,
as well as the correlation of P. pectinatus live abundances to
sediment organic carbon content [26]. However, gene
expression and geochemical data are insufficient support for
proven mixotrophy, and more carbon assimilation experi-
ments will be needed to determine such mechanisms in Ca.
Sedimenticola endophacoides.

Besides Ca. Sedimenticola endophacoides, we also
identified genes and transcripts belonging to other bacterial
taxa in the P. pectinatus gill metagenomes and metatran-
scriptomes. Transcripts mapped to Ca. Thiodiazotropha
endoloripes were noted in the gill metatransciptomes and
could originate from unbinned contigs in the gill metagen-
omes or closely related species co-occurring in the gill
microbial population. In all sequenced gill samples, we
observed the consistent presence of a Kistimonas-like spe-
cies related to the metabolically versatile Oceanospirillales
species that can be symbiotic [99–102], parasitic [103], or
pathogenic [51, 104]. In bivalves, parasitic Oceanospir-
illales have been identified from nuclei in the vent mussel
Bathymodiolus spp. [103]. Another Oceanospirillales spe-
cies with unknown functions was also reported in gills from
A. excavata [53]. Consistent with previous genomic reports
on Oceanospirillales species, we observed high expression
of various families of transposases in the Kistimonas-like
species, which may facilitate rapid adaptation to new hosts
or environments [105–107]. We also identified lower rela-
tive abundances of a Spirochaeta-like species in most gill
samples, as well as transcriptional evidence of their activity.
Spirochete species have been associated with a L. kazani-
like lucinid [56], the symbiotic gutless oligochete worm
Olavius [55, 108], and episymbionts of the hydrothermal
vent worm Alvinella pompejana [109].

Metatranscriptomic analyses showed that these three
bacterial species may utilize distinct carbon sources. Spe-
cifically, Ca. Sedimenticola endophacoides may participate
in mixotrophy in addition to thioautotrophy, whereas the
Kistimonas-like species performs fermentation and fatty
acid catabolism, and the Spirochaeta-like species breaks
down chitin, sugars, and dicarboxylate compounds. To
identify cellular locations of the Kistimonas-like and the
Spirochaeta-like species within the host gill tissue, we
designed multiple FISH probes targeting various 16S rRNA
gene regions of the Kistimonas-like and Spirochaeta-like
species, as these species showed positive DNA and cDNA
amplification from gill specimens. However, in contrast to
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positive FISH signals for Ca. Sedimenticola endophacoides,
we repeatedly failed to get unambiguous true positive sig-
nals for the Kistimonas-like and Spirochaeta-like species.
This could be because of the low abundances of these
species within the tissue samples, the hybridization effi-
ciency of the designed probes, the resolution of the confocal
microscopy, and/or other technical issues. Without micro-
scopic data, we are unable to determine the location of these
species and entirely rule out that they could be environ-
mental contaminants, transient gill-filtered bacteria,
pathogens, or parasites. More sensitive techniques, such as
catalyzed reporter deposition–FISH [110] and hybridization
chain reaction [111], should be performed to validate the
presence of these bacteria species in the gills of P.
pectinatus.

Our gill metatranscriptomic analyses also revealed
potential host–microbiota interactions involved in the
establishment and maintenance of lucinid–bacteria rela-
tionships. In P. pectinatus, transfer of nutrients, including
carbon and possibly B vitamins and cofactors, from sym-
biont to host may predominantly occur via host lysosomal
digestion. The high abundances of host-associated lyso-
zyme-encoding transcripts observed in this study may
indicate the presence of active lysosomes, supporting pre-
vious reports of lysosomes in the host gills [19] and in the
vent mussel Bathymodiolus azoricus [75]. We speculate that
host selection may include the secretion of bactericidal
lysozyme and other compounds (SI), which can be coun-
tered by gill microbiome species. Presumably to decrease
competition from closely related species/strains, as specu-
lated in the Eupyrmna–Vibrio symbiosis [112], Ca. Sedi-
menticola endophacoides encoded and expressed genes for
the production and secretion of bactericidal colicin [113],
which were also annotated in the Kistimonas-like species
MAG. A strongly expressed transcript cluster encoding a
hypothetical filamentous hemagglutinin N-terminal domain-
containing iron-responsive protein responsible for adhesion
to host tissues [66] was also observed in Ca. Sedimenticola
endophacoides, while fatty acid synthesis and catabolism-
related genes encoding isocitrate lyase, BCKDH, and pro-
teins within the methylcitrate cycle in Kistimonas-like
species have been attributed to growth and virulence in
other bacterial taxa [68–72]. Other genes associated with
virulence and bacterial secretion systems were also detected
in the genomes and transcriptomes of Ca. Sedimenticola
endophacoides. However, their significance in the lucinid–
bacteria chemosymbiosis is unclear. Nevertheless, the
speculated roles of bactericidal, adhesion, and virulence
compounds would have to be tested using experimental
approaches to better understand host selection and micro-
biome persistence.

Overall, this study provides insight into the metabolic
functions and interactions of P. pectinatus, its

thioautotrophic symbiont, and other gill microbiome spe-
cies. Our discovery of distinct metabolic differences
between the clade C endosymbiont, clade A lucinid sym-
bionts, and other marine thioautotrophic symbionts, as well
as the consistent presence and activity of other bacterial taxa
in the gills, suggests that lucinid gill microbiome diversity is
currently underrepresented in the literature and should
warrant more investigative efforts, including additional
host–microbiome meta-omics, imaging, and experimental
studies. It is well established that the lucinid gill micro-
biome and their interactions with the host and/or the
environment contribute to nutrient cycles in coastal marine
sediments; however, many details have been lacking. Our
metagenomic and metatranscriptomic analyses of
mangrove-associated lucinid host and gill microbiome
functions provide a systems biology perspective of host and
microbiome physiology that is relevant to host–microbe and
microbe–microbe interactions.
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