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Magnetic resonance imaging 
texture analysis to differentiate 
ameloblastoma from odontogenic 
keratocyst
João Pedro Perez Gomes 1,10, Celso Massahiro Ogawa 2,10, Rafael V. Silveira 3,4, 
Gabriela Castellano 3,4, Catharina Simioni De Rosa 1, Clarissa Lin Yasuda 4,5, 
André Caroli Rocha 6, Bengt Hasseus 7, Kaan Orhan 8, Paulo Henrique Braz‑Silva 1,9* & 
Andre Luiz Ferreira Costa 2

The differentiation between ameloblastoma (AB) and odontogenic keratocyst (OKC) is essential 
for the formulation of the surgical plan, especially considering the biological behavior of these two 
pathological entities. Therefore, developing means to increase the accuracy of the diagnostic process 
is extremely important for a safe treatment. The aim of this study was to use magnetic resonance 
imaging (MRI) based on texture analysis (TA) as an aid in differentiating AB from OKC. This study 
comprised 18 patients; eight patients with AB and ten with OKC. All diagnoses were determined 
through incisional biopsy and later through histological examination of the surgical specimen. MRI 
was performed using a 3 T scanner with a neurovascular coil according to a specific protocol. All images 
were exported to segmentation software in which the volume of interest (VOI) was determined by 
a radiologist, who was blind to the histopathological results. Next, the textural parameters were 
computed by using the MATLAB software. Spearman’s correlation coefficient was used to assess the 
correlation between texture parameters and the selected variables. Differences in TA parameters 
were compared between AB and OKC by using the Mann–Whitney test. Mann–Whitney test showed a 
statistically significant difference between AB and OKC for the parameters entropy (P = 0.033) and sum 
average (P = 0.033). MRI texture analysis has the potential to discriminate between AB and OKC as a 
noninvasive method. MRI texture analysis can be an additional tool to differentiate ameloblastoma 
from odontogenic keratocyst.

The differentiation of ameloblastoma (AB) and odontogenic keratocyst (OKC) is essential for the formulation 
of a surgical plan, especially considering the particularities of these two pathological entities. Nonetheless, it 
is not a simple task. The results of differential diagnosis by imaging techniques are often unsatisfactory due to 
their radiological similarities1,2.

AB and OKC are both classified as benign odontogenic lesions, with the former presenting a considerably 
more locally aggressive behavior. Moreover, these lesions may occur in both jaws with higher prevalence in the 
body and posterior ramus of the mandible1.

Although similar from an imaging perspective, both lesions present significant differences regarding biologi-
cal behavior, which is the reason why their differential diagnosis is of utmost importance in proposing a correct 
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therapeutic approach. The recurrence rate of OKC may vary from 17 to 56% when the treatment is based on sim-
ple enucleation. However, if an adjunctive treatment is performed in order to complement the surgical therapy, 
such as decompression before enucleation or application of Carnoy´s solution, the recurrence rate is reported to 
be less than 2%3. With regard to OKC, the treatment based on complete resection may be considered unaccep-
table for some clinicians due to the benign nature of the lesion and the morbidity caused by this procedure3. In 
fact, it has been emphasized that the surgical approach of OKC must be determined by factors such as size of the 
lesion, patient age, cortical perforation, proximity to vital structures and recurrence of the lesion. Recent evidence 
demonstrated that decompression followed by enucleation has shown significant reduction of recurrence rate4.

AB, on the other hand, is a locally aggressive odontogenic neoplasm with recurrence rates reaching 90%5. 
Surgical clearance has been established as a key factor to reach an effective treatment. According to some authors, 
only complete resection can facilitate the cure5. Therefore, the chances of cure by using a conservative treatment 
are lower for AB in comparison to OKC.

Histological examination is currently essential for establishing an accurate diagnosis. Authors have empha-
sized that roentgenograms do not reveal the true nature of the lesion6.

Uniformity of the findings using imaging techniques has been described as a challenge for a correct diagno-
sis of OKC and AB 2,7–9. Moreover, there is consensus that such a diagnosis cannot be achieved without biopsy. 
Nevertheless, incisional biopsy usually consists in obtaining only small fragments of the lesions’ wall, which may 
not reflect their true nature as inflammation can mask the diagnostic features10.

Kitisubkanchana et al. have tried to use width-to-length ratio to differentiate AB from OKC, concluding that 
this method might be useful to help distinguish these lesions10. The authors compared the radiographic features 
of OKC and AB in conventional radiography and cone beam computed tomography for differential diagnosis of 
both lesions, but the correct diagnosis was found to be dependent on the experience of the radiologist.

Logistic regression analysis based on the presence of high-density areas has also been suggested as a possible 
way to differentiate AB from OKC. The results obtained by Ariji et al.7 showed that the presence of high-density 
areas could be used for differential diagnosis of the two lesions.

Texture analysis (TA) is a statistical imaging technique using radiomics to examine the distribution of the 
pixel signal intensity and the association between neighboring pixel values, thus allowing quantifying subtle 
differences in the image11,12. This enables one to perform a quantitative investigation of the image without the 
subjectivity of the human vision13,14.

In previous studies, TA has been applied to help distinguish between benign and malignant tumors in several 
locations of the human body, such as brain, rectum and lung 15–18. Oda et al.19 have shown the importance of this 
methodology in distinguishing cystic and cystic-appearing lesions by using computed tomography (CT) scan. 
However, this methodology has not yet been evaluated for discrimination between OKC and AB by means of 
magnetic resonance imaging (MRI).

Therefore, this study aimed to assess the values of TA parameters for differentiating OKC from AB in MRI 
scans.

Materials and methods
Subjects.  The present prospective study was submitted to and authorized by the Research Ethics Committee 
of the Clinics Hospital of the University of São Paulo (USP) according to protocol number 90600718.5.0000.0068. 
All procedures in the study were performed in accordance with the human research ethical standards set by the 
local institutional board and the 1964 Helsinki Declaration, including later amendments. A written informed 
consent form was signed by all patients enrolled in the study. This study comprised 18 patients, all attending the 
Division of Dentistry of the Clinics Hospital from 2017 to 2020 for diagnostic and therapeutic purposes. Eight 
patients were diagnosed with AB and 10 with OKC. The inclusion criteria were the following: final histopatho-
logical diagnosis of AB or OKC and no clinical condition making the MRI exam unfeasible, such as presence of 
metallic prosthesis or claustrophobia. It is important to highlight that, with regard to the AB cases included, all 
of them were histologically classified as conventional ameloblastoma according to the 5th edition of the World 
Health Organization (WHO) Classification of Head and Neck Tumors 20. Therefore, the unicystic variant of AB 
was not included in the study.

Similarly, among the OKC cases included, all of them were histologically classified as odontogenic keratocyst 
as they are typically parakeratinized, in addition to being considered more aggressive and having a high recur-
rence rate21. Therefore, the orthokeratinized variant of OKC was not included in the study.

Histopathological diagnosis.  The histopathological diagnosis was performed by evaluating paraffin-
embedded H&E stained tissue sections from incisional biopsies of lesions after MRI. The initial histopatho-
logical diagnosis was confirmed by analysing the surgically removed specimen after treatment. The diagnostic 
criteria followed the 5th edition of the World Health Organization Classification of Head and Neck Tumors: 
Odontogenic and Maxillofacial Bone Tumors22.

Image acquisition.  All patients were examined on a 3  T scanner (Achieva-Intera-Philips®) with a neu-
rovascular coil. One sequence was included in the current study: axial T2-weighted imaging (Dixon Turbo 
Spin Echo) without fat suppression (time of repetition time [TR]/echo time [TE] = 3278/100 ms, voxel size of 
0.79 × 1.15 × 4.00, FOV 200 × 263 × 158 mm and acquisition time of 1 min, 48 s). This sequence showed to be 
appropriate for revealing the most homogeneous regions of each lesion, an essential condition for segmentation 
and subsequent differentiation of intensity between neighboring pixels.
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Image processing and segmentation.  All images were obtained in Digital Imaging and Communica-
tions in Medicine (DICOM) format and transferred to a computer (Dell Computer Corporation, Round Rock, 
TX, USA) with system 56DV4R2, 6 GB (RAM) and 32-inch monitor.

MRI slices were chosen on the basis of optimal characterization of the largest lesion area. Two radiologists 
(with 5 and 15 years of experience in MRI) actively participated in the analysis of all cases. The segmentation 
was carried out manually with an agreement of the two radiologists. Image processing was initially performed 
by using the InVesalius® software (www.​cti.​gov.​br/​inves​alius). Figures 1 and 2 demonstrate the segmentation 
process prior to determining the textural parameter values.

After segmentation of all lesions (i.e. VOI) and determination of their most homogeneous regions, the 
DICOM files were converted into NIfTI format by using the InVesalius® software toolbox.

Figure 1.   (A) Ameloblastoma located in the mandibular body on the left side. Arrows represent regions 
with variable signal intensity, which are characterized by hypersignal representing higher aqueous content, a 
characteristic of T2-weighted sequences. (B) Segmentation process represented by the red contour. Only the 
most homogeneous portion of the lesion was segmented, that is, the region shown by the hypersignal.

Figure 2.   (A) Ameloblastoma with smaller volume compared to that shown in Fig. 1. However, the variable 
signal intensity along the entire length of the lesion is maintained, so that the most homogeneous region 
remains restricted to the portion characterized by the hypersignal, which is typical of T2-weighted sequences. 
(B) Segmentation process represented by the red contour. Only the most homogeneous portion of the lesion was 
segmented, that is, the region shown by the hypersignal.

http://www.cti.gov.br/invesalius
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Parameters extraction.  One radiologist performed TA as part of a blinded study by using home-made 
routines developed with MATLAB software (MathWorks, Natick, MA, USA). All segmented images were pro-
cessed by using the MATLAB software (MathWorks, Natick, MA, USA) to extract the texture parameters.

Gray level co-occurrence matrix (GLCM) was the method used for TA, which is usually applied to two-
dimensional images as it computes the co-occurrence of two gray-level values separated by a given distance for a 
given direction23. Here, GLCM was applied isotropically, in which all directions were investigated simultaneously 
and directly in three dimensions24. One-hundred and twenty-eight gray levels were used, as well as distances from 
1 to 5 voxels, resulting in five 128 × 128 matrices for each VOI. A set of 11 Haralick parameters23 were extracted 
for each matrix: contrast, correlation, entropy of difference, entropy, homogeneity, sum average, sum entropy, 
sum variance, uniformity, variance of difference and variance (Table 1).

The choice of voxel distances for GLCM (1 to 5) was made because the longer the distance between the co-
occurring voxels, the larger has to be the VOI in order to have sufficient co-occurrence of voxel pairs. On the 
other hand, this size is limited by the size of the lesion. Also, given that we were looking for subtle tissue changes, 
we would expect them to occur at a not too long distance between the voxels. With regard to the number of gray 
levels, studies have demonstrated that a large number of gray levels implies in an increased shortage in GLCM. 
Therefore, we chose 128 levels, which were the optimal arrangement between shortage in GLCM and amount 
of information extracted. The Haralick parameters were also used in a previous study with good results14,25,26. It 
is important to mention that the number of slices used depended on the VOI, with GLCM being three-dimen-
sionally calculated within the manually- segmented VOI.

Statistical analysis.  Spearman’s correlation coefficient test was used to determine the correlation between 
textural parameters and the distances between the neighboring pixels. AB and OKC differences were compared 
by using Mann–Whitney test. All analyses were performed by using the R software, version 3.6.0 (The R Founda-
tion for Statistical Computing), at a significance level of 5%.

Ethical approval.  This study was approved by the Research Ethics Committee of the Clinics Hospital of the 
University of São Paulo (USP) according to protocol number 90600718.5.0000.0068.

Informed consent.  A written informed consent form was signed by all the patients enrolled in the study.

Results
Demographic and clinical characteristics of the patients.  The demographic characteristics of the 
patients and features of the lesions are shown in Table 2. Of these 18 patients, 10 were male and eight were 
female, with 50% of the patients being white (n = 9). The lesions were located in the ramus of the mandible 
(n = 10), body of the mandible (n = 4) and maxilla (n = 4).

Assessment of texture parameters.  Eleven texture parameters were measured at five different distances 
(q1, q2, q3, q4 and q5), totaling 55 variables. In order to reduce the number of variables, the Spearman’s cor-
relation coefficient test was used to determine the correlation between textural parameters and the respective 
distances.

A very strong correlation was found between the distances for four specific parameters: sum variance, sum 
entropy, variance of difference and entropy of difference. These four parameters showed a high correlation with 
at least one of the other seven remaining parameters, and for this reason, they were not considered in the fol-
lowing analyses. The exclusion of these four parameters was done in two steps:

1)	 The correlation of each parameter between the given directions was evaluated (Fig. 3). As the correlation 
is high, we can choose a single direction since the others provide the same information. Thus, q3 direction 
was used as reference for being the intermediate one.

Table 1.   Texture parameters used in the study.

Parameters Description

Angular second moment Measurement of the distribution (uniformity) of the gray-level image values. Images with low gray levels have 
more uniformity

Contrast Amount of local variation in the gray levels. Higher levels of this parameter can indicate presence of edges, 
noises or streaks in the mage

Correlation Measurement of the linear dependence of the gray levels between neighbor pixels, thus providing a measure-
ment similar to that of self-correction methods

Sum of squares Measurement of the dispersion of gray levels (variance) regarding the average

Inverse difference moment Measurement of the smoothness (homogeneity) in the distribution of gray-level image values. If the value of 
contrast is low, then the inverse difference moment is high

Entropy Measurement of the disorder degree between the pixels in the image, being the inverse of the angular second 
moment. Images with higher amount of gray levels have greater entropy

Sum of entropy Measurement of the disorder degree related to the distribution of the sum of gray-level image values
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Table 2.   Clinical aspects of patients and main features of the odontogenic keratocyst and ameloblastoma. SD, 
Standard deviation; N, Sample size.

Variable Mean ± SD Median Min–Max N Percentage

Age 35.5 ± 33.2 35.5 12–59 18

Gender

Male 10 55.6%

Female 8 44.6%

Total 18 100%

Location

Ramus of the mandible 10 55.6%

Body of the mandible 4 22.6%

Maxilla 4 22.6%

Total 18 100%

Skin color

White 9 50%

Not-white 9 50%

Total 18 100%

Histopathological diagnosis

Odontogenic Keratocyst 10 55.6%

Ameloblastoma 8 44.6%

Figure 3.   Correlation plots provide visual representation of the relationship between every texture parameters 
and the five positions based on Spearman’s correlation coefficient. Narrower ellipses indicate stronger 
correlations. The distances were organized according to the five directions in the following positions: q1, q2, q3, 
q4 and q5.
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2)	 In q3, the correlation between the parameters was assessed, and it was noticed that sum variance, sum 
entropy, variance of difference and entropy of difference presented a high correlation with at least one of the 
other remaining parameter. For this reason, they were excluded.

Figure 3 illustrates the correlation between the distances of each parameter evaluated in this study.
Once a strong correlation between q3 directions was determined and the variables restricted to seven param-

eters, the Mann–Whitney test was used to compare the texture parameters individually. Mann–Whitney test 
(Table 3) showed a statistically significant difference between the parameters entropy (p-value = 0.033) and sum 
average (p-value = 0.033) in comparison to the remaining parameters: uniformity, contrast, correlation, variance 
and homogeneity.

Figure 4 shows the correlation between variables within direction q3, chosen for being the intermediate 
between the five evaluated directions. The high correlation of the four excluded parameters with at least one 
remaining parameters is represented in this figure.

Table 3.   Position and dispersion measurements of selected texture variables, by group and p-value of 
comparison between groups. N, Sample size; S.D., Standard deviation; Q1 and Q3, Distances in which each 
variable (parameter) was measured.

Parameter Group N Mean S.D Average p-value

Uniformity
AB 8 0.0013 0.0008 0.0014 0.286

OK 10 0.0019 0.0010 0.0015

Contrast
AB 8 522 351 426 0.051

OK 10 241 149 242

Correlation
AB 8 0.34 0.21 0.41 0.929

OK 10 0.35 0.21 0.38

Variance
AB 8 449 336 393 0.110

OK 10 188 113 173

Homogeneity
AB 8 0.15 0.04 0.17 0.929

OK 10 0.15 0.05 0.14

Entropy
AB 8 3.3 0.3 3.3 0.033

OK 10 3.1 0.2 3.1

Sum average
AB 8 104 43 101 0.033

OK 10 63 21 57

Figure 4.   Correlation between variables within direction q3, chosen as reference for being the intermediate 
between all assessed directions. The high correlation of the textural parameters sum variance, sum entropy, 
variance of difference and entropy of difference with at least one remaining parameters is here represented.
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Discussion
Despite being radiologically similar, AB and OKC present a significantly different biological behavior with dif-
ferent recurrence rates, which is the reason why AB is treated less conservatively than OKC4. Developing means 
to allow discriminating one lesion from another by using imaging techniques, thus eliminating subjectivity, has 
been one of the greatest challenges in radiology field.

Artificial intelligence methods, specifically the machine-learning ones, have also been employed in an attempt 
to differentiate AB from OKC. Authors have proposed an algorithm with the intent to improve the accuracy of 
differential diagnosis of AB and OKC on panoramic radiographs1. Similarly, some authors have analysed the 
automatic classification performance of Google Inception v3, a convolutional neural network (CNN) using 
tomographic images of AB and OKC, concluding that a high classification accuracy was found in the images of 
AB despite the higher error rates27.

The present study has a similar premise. Like CNN, the application of MRI-based TA represents a possibility 
to increase the diagnostic power by combining imaging methods with gray-level recognition algorithms. This 
combination can provide us with important additional information to ensure accurate diagnosis and effective 
treatment with less morbidity. It has been emphasized that, although the diagnostic value of CNN models is 
considerably high, the application of this method is still not a reality due to a number of factors, such as com-
putational costs and time-consuming segmentation steps27.

In these particular aspects, once the MRI protocol is properly standardized, MRI-based TA has advantages 
over other methods, as the segmentation can be performed with free software, thus making the whole process 
less expensive.

One of the principles guiding this study was the fact that cystic lesions of the jaw are clearly apparent on CT 
images and radiographs, however subtle differences in internal components within the lesions are often difficult 
to measure19. In this study, MRI texture analysis was performed in the most homogeneous regions of each lesion 
in order to prevent any eventual bias from selecting areas with different pixel intensities. This was done aiming 
to distinguish which of the analysed textural parameter presents statistical significant difference when both 
lesions are compared by having their internal region as the main reference with no distinguishable difference. We 
assumed that, as the OKC internal components are inherently different from those of AB, the textural features 
of both lesions should also be different.

It has been mentioned by other authors that the cystic spaces of OKCs are constituted by fluids with lower 
protein concentration28. Similarly, density differences related to the presence of desquamated keratin may help 
differentiate OKC from AB19.

There are some studies reporting the usefulness of diffusion-weighted MRI for diagnostic imaging of these two 
odontogenic lesions29. The authors concluded that the technique was able to discriminate AB from OKC on the 
basis of the presence of solid enhancing lesions. However, there are some limitations regarding this method, such 
as presence of desquamated keratinized materials, which may hamper the diffusion of OKC, and susceptibility to 
image artifacts as apparent diffusion coefficient values can change even with the use of the same MRI system30,31.

In this study, out of the 11 parameters extracted, two were found to have statistically significance evidence: 
entropy (p-value = 0.033) and sum average (p-value = 0.033), with the averages being lower for OKC. It is known 
that OKC has a lower density than AB7. Histologically, OKC has areas of desquamated keratin. The sum average 
textural parameter represents the average of sums of two-pixel values in the image of interest, whereas entropy 
shows the degree of disorder between pixels in the image. High classification accuracy was found in the images of 
AB despite the presence of keratin, which seems to give greater uniformity to OKC in the studied MRI sequence. 
Therefore, greater uniformity and lesser degree of gray-level disorder compared to AB. This suggests the existence 
of features associated with a MRI signal of greater uniformity in OKC than in AB.

Entropy is a parameter originating from the field of information theory and aimed at measuring the amount 
of disorder of a system32. In the case of texture analysis, entropy measures how random the gray-level distribution 
of voxels is. The sum average parameter is the mean of the distribution of the sum of co-occurring gray levels32. 
Authors have already demonstrated that for OKC, the average Hounsfield Unity (HU) density had lower values 
and higher heterogeneity2.The differences in sum average and entropy textural features found in this study may 
be related to the differences in density between AB and OKC.

In this study, we used the manual segmentation technique in which the radiologist outlines the lesion so that 
the computer algorithms can perform the analysis later. Although manual segmentation is more subjective, it is 
more accurate33, even more considering that we used two radiologists in this step. Our results could assist the 
surgeon in exploring the lesion non-invasively, that is, with no need of biopsy. Additionally, we used public free 
software so there should not be any additional cost to the patient.

We demonstrated that extracted features from lesions on MRI images can be used for characterization of AB 
and OKC as well as for diagnostic supplementation.

This study, however, has several limitations which should be acknowledged. Firstly, the relatively small sam-
ple. Secondly, the sample had no case of unicystic ameloblastoma and orthokeratinized odontogenic keratocyst. 
Therefore, further studies on other histological types should be performed for comparisons with texture param-
eters. As for the relatively small sample, it is important to highlight that because TA is based on the signal intensity 
of pairs of pixels, the sample size is not only related to the number of patients, but mainly to the volume of the 
lesions. Thus, the higher the volume is, the larger the region of segmentation and the greater the amount of pixels 
in each image. At last, drawing the VOIs manually may have led to a certain amount of variability.

As the perspectives for the continuation of this study rely on the automation of the segmentation process 
and statistical analysis of the images, it is essential to make this tool easy and fast so that it can be used routinely.
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Conclusions
Our results show that entropy and sum average are textural parameters of T2-weighted images which can be 
used without fat suppression for diagnosis of radiologically similar lesions, such as AB and OKC. Therefore, MRI 
texture parameters are a sensitive and efficient method to detect both lesions and could be of high value to assist 
in the therapeutic decision-making process.

Data availability
The datasets and/or analysed during the current study are available from the corresponding author on reason-
able request.
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