Air pollution and high-intensity interval exercise: Implications to anti-inflammatory balance, metabolome and cardiovascular responses

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
CRUZ, Ramon
KOCH, Sarah
SFORCA, Mauricio L.
LIMA-SILVA, Adriano E.
SALDIVA, Paulo
KOEHLE, Michael
BERTUZZI, Romulo
Citação
SCIENCE OF THE TOTAL ENVIRONMENT, v.809, article ID 151094, 12p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
High-intensity interval exercise (HIIE) is an effective non-pharmacological tool for improving physiological responses related to health. When HIIE is performed in urban centers, however, the exerciser is exposed to traffic-related air pollution (TRAP), which is associated with metabolic, anti-inflammatory imbalance and cardiovascular diseases. This paradoxical combination has the potential for conflicting health effects. Thus, the aim of this study was to determine the effects of HIIE performed in TRAP exposure on serum cytokines, non-target metabolomics and cardiovascular parameters. Fifteen participants performed HIIE in a chamber capable to deliver filtered air (FA condition) or non-filtered air (TRAP condition) from a polluted site adjacent to the exposure chamber. Non-target blood serum metabolomics, blood serum cytokines and blood pressure analyses were collected in both FA and TRAP conditions at baseline, 10 min after exercise, and 1 h after exercise. The TRAP increased IL-6 concentration by 1.7 times 1 h after exercise (p < 0.01) and did not change the anti-inflammatory balance (IL-10/TNF-alpha ratio). In contrast, FA led to an increase in IL-10 and IL-10/TNF-alpha ratio (p< 0.01), by 2.1 and 2.3 times, respectively. The enrichment analysis showed incomplete fatty acid metabolism under the TRAP condition (p < 0.05) 10 min after exercise. There was also an overactivity of ketone body metabolism (p < 0.05) at 10 min and at 1 h after exercise with TRAP. Exercise-induced acute decrease in systolic blood pressure (SBP) was not observed at 10min and impaired at 1 h after exercise (p < 0.05). These findings reveal that TRAP potentially attenuates health benefits often related to HIIE. For instance, the anti-inflammatory balance was impaired, accompanied by accumulation of metabolites related to energy supply and reduction to exercise-induced decrease in SBP.
Palavras-chave
Particulate matter, Metabolome, Cytokines, Blood pressure, Heart rate and vigorous exercise
Referências
  1. Amini H, 2020, ENVIRON INT, V142, DOI 10.1016/j.envint.2020.105891
  2. Austin E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137789
  3. Avila-Palencia I, 2019, ENVIRON RES, V173, P387, DOI 10.1016/j.envres.2019.03.032
  4. Bai YT, 2016, BBA-GEN SUBJECTS, V1860, P2863, DOI 10.1016/j.bbagen.2016.04.030
  5. Brook RD, 2010, CIRCULATION, V121, P2331, DOI 10.1161/CIR.0b013e3181dbece1
  6. Brook RD, 2009, HYPERTENSION, V54, P659, DOI 10.1161/HYPERTENSIONAHA.109.130237
  7. Cabral-Santos C, 2015, J SPORT SCI MED, V14, P849
  8. CETESB, 2005, CAR EST RED AUT MON
  9. CETESB, 2019, QUAL EST SAO PAUL
  10. Chen RJ, 2018, ENVIRON HEALTH PERSP, V126, DOI [10.1289/EHP1447, 10.1289/ehp1447]
  11. Chong J, 2018, NUCLEIC ACIDS RES, V46, pW486, DOI 10.1093/nar/gky310
  12. Cole-Hunter T, 2016, J EXPO SCI ENV EPID, V26, P133, DOI 10.1038/jes.2015.66
  13. Cole-Hunter T, 2013, ENVIRON HEALTH-GLOB, V12, DOI 10.1186/1476-069X-12-29
  14. Cole-Hunter T, 2012, ATMOS ENVIRON, V61, P197, DOI 10.1016/j.atmosenv.2012.06.041
  15. Cox PJ, 2014, EXTREME PHYSIOL MED, V3, DOI 10.1186/2046-7648-3-17
  16. Cruz R, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-58253-7
  17. Cutrufello PT, 2012, SPORTS MED, V42, P1041, DOI 10.2165/11635170-000000000-00000
  18. Demetriou CA, 2012, OCCUP ENVIRON MED, V69, P619, DOI 10.1136/oemed-2011-100566
  19. Donaire-Gonzalez D, 2015, AM J PREV MED, V49, P842, DOI 10.1016/j.amepre.2015.03.036
  20. Dons E, 2017, ENVIRON SCI TECHNOL, V51, P1859, DOI 10.1021/acs.est.6b05782
  21. Dorneles GP, 2016, CYTOKINE, V77, P1, DOI 10.1016/j.cyto.2015.10.003
  22. Dudzinska W, 2015, PHYSIOL RES, V64, P467, DOI 10.33549/physiolres.932766
  23. Dudzinska W, 2018, J PHYSIOL SCI, V68, P293, DOI 10.1007/s12576-017-0536-x
  24. Ferreira GA, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00671
  25. Fiordelisi A, 2017, HEART FAIL REV, V22, P337, DOI 10.1007/s10741-017-9606-7
  26. Garber CE, 2011, MED SCI SPORT EXER, V43, P1334, DOI 10.1249/MSS.0b013e318213fefb
  27. Ghosh S, 2013, J APPL PHYSIOL, V115, P1343, DOI 10.1152/japplphysiol.01487.2012
  28. Gibala MJ, 2012, J PHYSIOL-LONDON, V590, P1077, DOI 10.1113/jphysiol.2011.224725
  29. Giles LV, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0434-6
  30. Giles LV, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0192419
  31. Giles LV, 2014, MED SCI SPORT EXER, V46, P1999, DOI 10.1249/MSS.0000000000000309
  32. Giles LV, 2014, SPORTS MED, V44, P223, DOI 10.1007/s40279-013-0108-z
  33. Giorgini P, 2016, J CARDIOPULM REHABIL, V36, P84, DOI 10.1097/HCR.0000000000000139
  34. Guimaraes GV, 2010, HYPERTENS RES, V33, P627, DOI 10.1038/hr.2010.42
  35. HOWLEY ET, 1995, MED SCI SPORT EXER, V27, P1292
  36. Jewison T, 2014, NUCLEIC ACIDS RES, V42, pD478, DOI 10.1093/nar/gkt1067
  37. Koch S, 2021, ENVIRON INT, V146, DOI 10.1016/j.envint.2020.106182
  38. Kubesch N, 2015, EUR J PREV CARDIOL, V22, P548, DOI 10.1177/2047487314555602
  39. Kuehnbaum NL, 2014, SCI REP-UK, V4, DOI 10.1038/srep06166
  40. Laeremans M, 2018, ENVIRON INT, V117, P82, DOI 10.1016/j.envint.2018.04.040
  41. Liang DH, 2019, ENVIRON INT, V127, P503, DOI 10.1016/j.envint.2019.04.003
  42. Liang DH, 2018, ENVIRON INT, V120, P145, DOI 10.1016/j.envint.2018.07.044
  43. Mahendran Y, 2013, DIABETES, V62, P3618, DOI 10.2337/db12-1363
  44. Matt F, 2016, ENVIRON INT, V97, P45, DOI 10.1016/j.envint.2016.10.011
  45. Miller DB, 2015, TOXICOL APPL PHARM, V286, P65, DOI 10.1016/j.taap.2015.03.025
  46. Millers DB, 2016, AM J RESP CRIT CARE, V193, P1382, DOI 10.1164/rccm.201508-1599OC
  47. Morville T, 2020, CELL REP, V33, DOI 10.1016/j.celrep.2020.108554
  48. Murray CJL, 2020, LANCET, V396, P1223, DOI 10.1016/S0140-6736(20)30752-2
  49. Nyhan M, 2014, SCI TOTAL ENVIRON, V468, P821, DOI 10.1016/j.scitotenv.2013.08.096
  50. Parry TL, 2018, METABOLOMICS, V14, DOI 10.1007/s11306-017-1303-y
  51. Pasqua LA, 2020, CHEMOSPHERE, V254, DOI 10.1016/j.chemosphere.2020.126817
  52. Pedersen BK, 2011, J EXP BIOL, V214, P337, DOI 10.1242/jeb.048074
  53. Puchalska P, 2017, CELL METAB, V25, P262, DOI 10.1016/j.cmet.2016.12.022
  54. Rajagopalan S, 2012, DIABETES, V61, P3037, DOI 10.2337/db12-0190
  55. Ribeiro AG, 2019, ENVIRON RES, V170, P243, DOI 10.1016/j.envres.2018.12.034
  56. Ruckerl R, 2007, ENVIRON HEALTH PERSP, V115, P1072, DOI 10.1289/ehp.10021
  57. Rundell KW, 2015, COMPR PHYSIOL, V5, P579, DOI 10.1002/cphy.c130013
  58. Sinharay R, 2018, LANCET, V391, P339, DOI 10.1016/S0140-6736(17)32643-0
  59. Snow SJ, 2018, TOXICOL SCI, V164, P9, DOI 10.1093/toxsci/kfy129
  60. So R, 2020, ENVIRON INT, V143, DOI 10.1016/j.envint.2020.105983
  61. Stergiou GS, 2006, BLOOD PRESS MONIT, V11, P157, DOI 10.1097/01.mbp.0000209071.84965.bf
  62. Stevenson M, 2016, LANCET, V388, P2925, DOI 10.1016/S0140-6736(16)30067-8
  63. Talanian JL, 2007, J APPL PHYSIOL, V102, P1439, DOI 10.1152/japplphysiol.01098.2006
  64. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  65. van Veldhoven K, 2019, ENVIRON INT, V123, P124, DOI 10.1016/j.envint.2018.11.034
  66. Westerhuis JA, 2008, METABOLOMICS, V4, P81, DOI 10.1007/s11306-007-0099-6
  67. WHO,, 2016, GLOB URB AMB AIR POL
  68. Wishart DS, 2013, NUCLEIC ACIDS RES, V41, pD801, DOI 10.1093/nar/gks1065
  69. Xia JG, 2013, METABOLOMICS, V9, P280, DOI 10.1007/s11306-012-0482-9
  70. Xia JG, 2009, NUCLEIC ACIDS RES, V37, pW652, DOI 10.1093/nar/gkp356
  71. Xu YT, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19092474
  72. Zuurbier M, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-48