LPS Response Is Impaired by Urban Fine Particulate Matter

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, n.7, article ID 3913, 18p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Fine particulate matter (PM2.5) is a complex mixture of components with diverse chemical and physical characteristics associated with increased respiratory and cardiovascular diseases mortality. Our study aimed to investigate the effects of exposure to concentrated PM2.5 on LPS-induced lung injury onset. BALB/c male mice were exposed to either filtered air or ambient fine PM2.5 in an ambient particle concentrator for 5 weeks. Then, an acute lung injury was induced with nebulized LPS. The animals were euthanized 24 h after the nebulization to either LPS or saline. Inflammatory cells and cytokines (IL-1 beta, IL-4, IL-5, IL-6, IL-10, IL-17, TNF) were assessed in the blood, bronchoalveolar lavage fluid (BALF), and lung tissue. In addition, lung morphology was assessed by stereological methods. Our results showed that the PM+LPS group showed histological evidence of injury, leukocytosis with increased neutrophils and macrophages, and a mixed inflammatory response profile, with increased KC, IL-6, IL-1 beta, IL-4, and IL-17. Our analysis shows that there is an interaction between the LPS nebulization and PM2.5 exposure, differently modulating the inflammatory response, with a distinct response pattern as compared to LPS or PM2.5 exposure alone. Further studies are required to explain the mechanism of immune modulation caused by PM2.5 exposure.
Palavras-chave
air pollution, acute lung injury, lipopolysaccharides, inflammatory response
Referências
  1. Andrade MDF, 2017, ATMOS ENVIRON, V159, P66, DOI 10.1016/j.atmosenv.2017.03.051
  2. Andrade MD, 2012, AIR QUAL ATMOS HLTH, V5, P79, DOI 10.1007/s11869-010-0104-5
  3. Arias-Perez RD, 2020, ENVIRON SCI POLLUT R, V27, P42390, DOI 10.1007/s11356-020-10574-w
  4. Becker S, 2003, EXP LUNG RES, V29, P29, DOI 10.1080/01902140303762
  5. CETESB, 2020, QUAL AR EST SAO PAUL
  6. Chu SY, 2011, INT IMMUNOPHARMACOL, V11, P1780, DOI 10.1016/j.intimp.2011.06.010
  7. Croft DP, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-98729-8
  8. de Miranda RM, 2012, AIR QUAL ATMOS HLTH, V5, P63, DOI 10.1007/s11869-010-0124-1
  9. Domingo JL, 2020, ENVIRON RES, V187, DOI 10.1016/j.envres.2020.109650
  10. Ebbensgaard A, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.02153
  11. Forbes LJL, 2009, THORAX, V64, P657, DOI 10.1136/thx.2008.109389
  12. Galuszka A, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17041227
  13. Gurczynski SJ, 2018, AM J PHYSIOL-LUNG C, V314, pL6, DOI 10.1152/ajplung.00344.2017
  14. Guzman-Beltran S, 2017, CELL IMMUNOL, V315, P45, DOI 10.1016/j.cellimm.2017.02.004
  15. Hsia CCW, 2010, AM J RESP CRIT CARE, V181, P394, DOI 10.1164/rccm.200809-1522ST
  16. Joint FAO/WHO Expert Committee on Food Additives, 2006, World Health Organ Tech Rep Ser, V930, P1
  17. Kim DI, 2021, BIOMOLECULES, V11, DOI 10.3390/biom11010067
  18. Klein G, 2013, J BIOL CHEM, V288, P8111, DOI 10.1074/jbc.M112.445981
  19. Lin YJ, 2019, INFECT DRUG RESIST, V12, P3835, DOI 10.2147/IDR.S227823
  20. Liu JG, 2019, J THORAC DIS, V11, P2617, DOI 10.21037/jtd.2019.05.77
  21. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  22. Manisalidis I, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00014
  23. Matute-Bello G, 2008, AM J PHYSIOL-LUNG C, V295, pL379, DOI 10.1152/ajplung.00010.2008
  24. Lopes TDM, 2018, ENVIRON POLLUT, V241, P511, DOI 10.1016/j.envpol.2018.05.055
  25. Mestas J, 2004, J IMMUNOL, V172, P2731, DOI 10.4049/jimmunol.172.5.2731
  26. Meyerholz DK, 2018, VET PATHOL, V55, P42, DOI 10.1177/0300985817726117
  27. Miyata R, 2011, TOXICOL APPL PHARM, V257, P209, DOI 10.1016/j.taap.2011.09.007
  28. Nadeau K, 2010, J ALLERGY CLIN IMMUN, V126, P845, DOI 10.1016/j.jaci.2010.08.008
  29. Nomura F, 2000, J IMMUNOL, V164, P3476, DOI 10.4049/jimmunol.164.7.3476
  30. Pagani LG, 2020, ATMOSPHERE-BASEL, V11, DOI 10.3390/atmos11010043
  31. Park BS, 2013, EXP MOL MED, V45, DOI 10.1038/emm.2013.97
  32. Phalen RF, 2008, J AEROSOL MED PULM D, V21, P113, DOI 10.1089/jamp.2007.0673
  33. Reilly JP, 2019, AM J RESP CRIT CARE, V199, P62, DOI 10.1164/rccm.201803-0435OC
  34. Renwick LC, 2004, OCCUP ENVIRON MED, V61, P442, DOI 10.1136/oem.2003.008227
  35. Sahuquillo-Arce Jose M, 2017, ERJ Open Res, V3, DOI 10.1183/23120541.00014-2017
  36. Schraufnagel DE, 2019, CHEST, V155, P409, DOI 10.1016/j.chest.2018.10.042
  37. Seeley JJ, 2017, J LEUKOCYTE BIOL, V101, P107, DOI 10.1189/jlb.3MR0316-118RR
  38. SIOUTAS C, 1995, ENVIRON HEALTH PERSP, V103, P172, DOI 10.2307/3432274
  39. Takano H, 2002, AM J RESP CRIT CARE, V165, P1329, DOI 10.1164/rccm.2108122
  40. van Voorhis M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082545
  41. Wang XY, 2010, PROG LIPID RES, V49, P97, DOI 10.1016/j.plipres.2009.06.002
  42. Costa NDX, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-72130-3
  43. Costa NDX, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0185474
  44. Yanagisawa R, 2003, THORAX, V58, P605, DOI 10.1136/thorax.58.7.605
  45. Yang J, 2020, EXP MOL MED, V52, P338, DOI 10.1038/s12276-019-0367-3
  46. Yoshizaki K, 2016, ENVIRON POLLUT, V213, P359, DOI 10.1016/j.envpol.2016.02.044