Diversity of variant alleles encoding Kidd, Duffy, and Kell antigens in individuals with sickle cell disease using whole genome sequencing data from the NHLBI TOPMed Program

Imagem de Miniatura
Citações na Scopus
Tipo de produção
Data de publicação
Título da Revista
ISSN da Revista
Título do Volume
KELLY, Shannon
TELEN, Marilyn
SCHMIDT, Luciana C.
MELO, Karla
WHEELER, Marsha M.
TRANSFUSION, v.61, n.2, p.603-616, 2021
Projetos de Pesquisa
Unidades Organizacionais
Background Genetic variants in the SLC14A1, ACKR1, and KEL genes, which encode Kidd, Duffy, and Kell red blood cell antigens, respectively, may result in weakened expression of antigens or a null phenotype. These variants are of particular interest to individuals with sickle cell disease (SCD), who frequently undergo chronic transfusion therapy with antigen-matched units. The goal was to describe the diversity and the frequency of variants in SLC14A1, ACKR1, and KEL genes among individuals with SCD using whole genome sequencing (WGS) data. Study Design and Methods Two large SCD cohorts were studied: the Recipient Epidemiology and Donor Evaluation Study III (REDS-III) (n = 2634) and the Outcome Modifying Gene in SCD (OMG) (n = 640). Most of the studied individuals were of mixed origin. WGS was performed as part of the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. Results In SLC14A1, variants included four encoding a weak Jk(a) phenotype and five null alleles (JK(null)). JKA*01N.09 was the most common JK(null). One possible JK(null) mutation was novel: c.812G>T. In ACKR1, identified variants included two that predicted Fy(x) (FY*X) and one corresponding to the c.-67T>C GATA mutation. The c.-67T>C mutation was associated with FY*A (FY*01N.01) in four participants. FY*X was identified in 49 individuals. In KEL, identified variants included three null alleles (KEL*02N.17, KEL*02N.26, and KEL*02N.04) and one allele predicting K-mod phenotype, all in heterozygosity. Conclusions We described the diversity and distribution of SLC14A1, ACKR1, and KEL variants in two large SCD cohorts, comprising mostly individuals of mixed ancestry. This information may be useful for planning the transfusion support of patients with SCD.
blood group genomics, hematology &#8211, red cells, immunohematology (RBC serology, blood groups)
  1. Arnoni CP, 2014, TRANSFUSION, V54, P2128, DOI 10.1111/trf.12564
  2. Billingsley Katrina L, 2013, Immunohematology, V29, P145
  3. Boturao-Neto E, 2015, TRANSFUS MED HEMOTH, V42, P52, DOI 10.1159/000370232
  4. Brunetta D, 2017, TRANSFUSION, V57, P487, DOI 10.1111/trf.13933
  5. Burgos A, 2013, TRANSFUSION, V53, p39A
  6. Carneiro-Proietti ABF, 2018, BRIT J HAEMATOL, V182, P895, DOI 10.1111/bjh.15462
  7. Casas J, 2015, TRANSFUSION, V55, P1388, DOI 10.1111/trf.12987
  8. Castilho L, 2004, VOX SANG, V87, P190, DOI 10.1111/j.1423-0410.2004.00554.x
  9. Chou ST, 2017, BLOOD ADV, V1, P1414, DOI 10.1182/bloodadvances.2017007898
  10. Chou ST, 2013, BLOOD, V122, P1062, DOI 10.1182/blood-2013-03-490623
  11. Dezan M. R., 2016, ISBT SCI SERIES, V11, P132
  12. Dezan MR, 2017, BLOOD CELL MOL DIS, V65, P8, DOI 10.1016/j.bcmd.2017.03.014
  13. Dinardo CL, 2019, TRANSFUSION, V59, P3228, DOI 10.1111/trf.15479
  14. Elmariah H, 2014, AM J HEMATOL, V89, P530, DOI 10.1002/ajh.23683
  15. Fichou Y, 2016, VOX SANG, V111, P418, DOI 10.1111/vox.12432
  16. Fichou Y, 2020, TRANSFUS MED HEMOTH, V47, P23, DOI 10.1159/000504584
  17. Fichou Y, 2014, BRIT J HAEMATOL, V167, P554, DOI 10.1111/bjh.13084
  18. Giollo M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124579
  19. Guo ZH, 2013, TRANSFUSION, V53, P545, DOI 10.1111/j.1537-2995.2012.03750.x
  20. Hamilton Janis R, 2015, Immunohematology, V31, P29
  21. Hendrickson JE, 2012, TRANSFUSION, V52, P231, DOI 10.1111/j.1537-2995.2011.03255.x
  22. Hoher G, 2018, BLOOD TRANSFUS-ITALY, V16, P93, DOI 10.2450/2017.0119-16
  23. Horn T, 2012, TRANSFUSION, V52, P1092, DOI 10.1111/j.1537-2995.2011.03399.x
  24. Kempinska-Podhorodecka A, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-115
  25. Kormoczi GF, 2007, TRANSFUSION, V47, P703, DOI 10.1111/j.1537-2995.2007.01174.x
  26. Lane WJ, 2019, TRANSFUSION, V59, P3253, DOI 10.1111/trf.15473
  27. Lane WJ, 2016, TRANSFUSION, V56, P743, DOI 10.1111/trf.13416
  28. LaSalle-Williams M, 2011, TRANSFUSION, V51, P1732, DOI 10.1111/j.1537-2995.2010.03045.x
  29. Lee S, 1997, VOX SANG, V73, P1, DOI 10.1046/j.1423-0410.1997.7310001.x
  30. Lee S, 2001, J BIOL CHEM, V276, P27281, DOI 10.1074/jbc.M103433200
  31. Lemes RB, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0196360
  32. Moller M, 2016, BLOOD ADV, V1, P240, DOI 10.1182/bloodadvances.2016001867
  33. Moulds JM, 2013, TRANSFUSION, V53, P2867, DOI 10.1111/trf.12205
  34. Olsson ML, 1998, BRIT J HAEMATOL, V103, P1184, DOI 10.1046/j.1365-2141.1998.01083.x
  35. Pellegrino J, 2001, J CLIN LAB ANAL, V15, P8
  36. Perez I, 2019, TRANSFUS APHER SCI, V58, P453, DOI 10.1016/j.transci.2019.04.025
  37. Pirenne F, 2017, TRANSFUS CLIN BIOL, V24, P227, DOI 10.1016/j.tracli.2017.05.016
  38. Reid ME, 2014, BLOOD CELL MOL DIS, V52, P195, DOI 10.1016/j.bcmd.2013.11.003
  39. ROSSE WF, 1990, BLOOD, V76, P1431
  40. Schmid P, 2012, TRANSFUSION, V52, P1260, DOI 10.1111/j.1537-2995.2011.03431.x
  41. Guelsin GAS, 2010, J CLIN LAB ANAL, V24, P311, DOI 10.1002/jcla.20407
  42. Stabentheiner S, 2011, VOX SANG, V100, P381, DOI 10.1111/j.1423-0410.2010.01444.x
  43. Tournamille C, 1998, BLOOD, V92, P2147, DOI 10.1182/blood.V92.6.2147.418k04_2147_2156
  44. Van Buren NL, 2020, TRANSFUSION, V60, P16, DOI 10.1111/trf.15599
  45. Vichinsky EP, 2001, TRANSFUSION, V41, P1086, DOI 10.1046/j.1537-2995.2001.41091086.x
  46. Wester ES, 2011, TRANSFUSION, V51, P380, DOI 10.1111/j.1537-2995.2010.02795.x
  47. Wheeler MM, 2019, GENET MED, V21, P477, DOI 10.1038/s41436-018-0074-9
  48. Xu JZ, 2018, AM J HEMATOL, V93, P1451, DOI 10.1002/ajh.25263
  49. Yazdanbakhsh K, 2000, TRANSFUSION, V40, P310, DOI 10.1046/j.1537-2995.2000.40030310.x
  50. Zimmerman PA, 1999, P NATL ACAD SCI USA, V96, P13973, DOI 10.1073/pnas.96.24.13973