Impaired cardiorespiratory fitness and endothelial function after SARS-CoV-2 infection in a sample of mainly immunocompromised youth

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
PRADO, Danilo Marcelo Leite do
SIECZKOWSKA, Sofia Mendes
ESTEVES, Gabriel P.
Citação
JOURNAL OF APPLIED PHYSIOLOGY, v.135, n.6, p.1323-1329, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study aimed to compare cardiopulmonary fitness and endothelial function 6 months after hospital diagnosis in a sample mainly comprising immunocompromised patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection versus noninfected controls. Youth (n = 30; age: 14 yr; 60% females) with confirmed SARS-CoV-2 seen in a tertiary hospital of Sao Paulo, Brazil, were matched by propensity score based on BMI, age, sex, and pre-existing diseases with a control group who had not been tested positive for SARS-CoV-2 infection (n = 30; age: 15 yr; 50% females). Cardiopulmonary fitness (by means of a cardiopulmonary exercise test: CPET) and brachial flow-mediated dilation (%b-FMD) were assessed 3-6 mo after diagnosis. Patients were matched by propensity score based on BMI, age, sex and pre-existing diseases, if any, with a control group who had not been tested positive for SARS-CoV-2. Compared with controls, patients with COVID-19 showed reduced ventilatory anaerobic threshold (VAT) and peak exercise time and minute ventilation/maximum voluntary ventilation (V_E/MVV) (all P < 0.01). Brachial endothelial function variables were all adjusted for body surface area (BSA). Patients with COVID-19 had decreased %b-FMD (3.6 vs. 5.4; P = 0.03) mean and positive flow (P = 0.02 and P = 0.03, respectively) versus controls. Adjusted linear regression models exploring associations between CPET variables, %b-FMD and the potential predictors post-COVID-19 syndrome, number of symptoms, hospitalization, and COVID severity did not detect significant associations, except for total shear rate in hospitalization (coefficient: -65.07 [95%CI -119.5;-10.5], P = 0.02). Immunocompromised and previously healthy children and adolescents with COVID-19 presented with impaired exercise capacity and endothelial dysfunction when compared with their noninfected counterparts, but the mechanisms remain unknown.
Palavras-chave
COVID-19, cardiovascular health, exercise testing, pediatrics
Referências
  1. Alveno RA, 2018, J PEDIAT-BRAZIL, V94, P539, DOI 10.1016/j.jped.2017.07.014
  2. Ambrosino P, 2022, J CLIN MED, V11, DOI 10.3390/jcm11051452
  3. Ambrosino P, 2021, BIOMEDICINES, V9, DOI 10.3390/biomedicines9080957
  4. Andrianto, 2021, MICROVASC RES, V138, DOI 10.1016/j.mvr.2021.104224
  5. [Anonymous], 2020, COVID-19 rapid guideline: managing the long-term effects of COVID-19
  6. Baratto C, 2021, J APPL PHYSIOL, V130, P1470, DOI 10.1152/japplphysiol.00710.2020
  7. Böhm B, 2022, FRONT PEDIATR, V9, DOI 10.3389/fped.2021.787550
  8. Bongers BC, 2011, EUR J CARDIOV PREV R, V18, P384, DOI 10.1177/1741826710389390
  9. Passone CGB, 2020, REV PAUL PEDIATR, V38, DOI 10.1590/1984-0462/2020/38/2018101
  10. CELERMAJER DS, 1992, LANCET, V340, P1111, DOI 10.1016/0140-6736(92)93147-F
  11. Çiftel M, 2022, EUR J PEDIATR, V181, P91, DOI 10.1007/s00431-021-04136-6
  12. Clavario P, 2020, ERJ Open Res, V7, P113, DOI 10.1101
  13. Debeaumont D, 2021, PHYS THER, V101, DOI 10.1093/ptj/pzab099
  14. Fink TT, 2021, CLINICS, V76, DOI 10.6061/clinics/2021/e3511
  15. Giardini A, 2009, J AM COLL CARDIOL, V53, P1548, DOI 10.1016/j.jacc.2009.02.005
  16. Gomez-Rubio V., 2017, J. Stat. Software, V77, P1, DOI [10.18637/jss.v077.b02, DOI 10.18637/JSS.V077.B02, 10.1080/15366367.2019.1565254, DOI 10.1080/15366367.2019.1565254]
  17. Gualano B, 2017, NAT REV RHEUMATOL, V13, P368, DOI 10.1038/nrrheum.2017.75
  18. Ho DE, 2011, J STAT SOFTW, V42
  19. Holder SM, 2021, HYPERTENSION, V77, P1469, DOI 10.1161/HYPERTENSIONAHA.120.15754
  20. Hossri CA, 2019, EUR J PREV CARDIOL, V26, P177, DOI 10.1177/2047487318807977
  21. Lee DC, 2010, J PSYCHOPHARMACOL, V24, P27, DOI 10.1177/1359786810382057
  22. Longobardi I, 2022, AM J PHYSIOL-HEART C, V323, pH569, DOI 10.1152/ajpheart.00291.2022
  23. NIXON PA, 1992, NEW ENGL J MED, V327, P1785, DOI 10.1056/NEJM199212173272504
  24. Pianosi P, 2005, THORAX, V60, P50, DOI 10.1136/thx.2003.008102
  25. Raman B, 2021, ECLINICALMEDICINE, V31, DOI 10.1016/j.eclinm.2020.100683
  26. Riou M, 2021, J CLIN MED, V10, DOI 10.3390/jcm10061318
  27. Rohlenova K, 2018, TRENDS CELL BIOL, V28, P224, DOI 10.1016/j.tcb.2017.10.010
  28. Ross RM, 2003, AM J RESP CRIT CARE, V167, P1451, DOI 10.1164/ajrccm.167.10.950
  29. Skjorten I, 2021, EUR RESPIR J, V58, DOI 10.1183/13993003.00996-2021
  30. Takken Tim, 2017, Ann Am Thorac Soc, V14, pS123, DOI 10.1513/AnnalsATS.201611-912FR
  31. Thijssen DHJ, 2019, EUR HEART J, V40, P2534, DOI 10.1093/eurheartj/ehz350
  32. Urbina EM, Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association
  33. Vonbank K, 2021, FRONT MED-LAUSANNE, V8, DOI 10.3389/fmed.2021.773788
  34. Walia R, 2022, J FAM MED PRIM CARE, V11, P319, DOI 10.4103/jfmpc.jfmpc_281_21
  35. West SL, 2019, BMC PEDIATR, V19, DOI 10.1186/s12887-018-1377-3
  36. Zimmermann P, 2021, ARCH DIS CHILD, V106, P429, DOI 10.1136/archdischild-2020-320338