External Environmental Pollution as a Risk Factor for Asthma

Carregando...
Imagem de Miniatura
Citações na Scopus
65
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
HUMANA PRESS INC
Autores
CHATKIN, Jose
CORREA, Liana
Citação
CLINICAL REVIEWS IN ALLERGY & IMMUNOLOGY, v.62, n.1, Special Issue, p.72-89, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Air pollution is a worrisome risk factor for global morbidity and mortality and plays a special role in many respiratory conditions. It contributes to around 8 million deaths/year, with outdoor exposure being responsible for more than 4.2 million deaths throughout the world, while more than 3.8 million die from situations related to indoor pollution. Pollutant agents induce several respiratory symptoms. In addition, there is a clear interference in numerous asthma outcomes, such as incidence, prevalence, hospital admission, visits to emergency departments, mortality, and asthma attacks, among others. The particulate matter group of pollutants includes coarse particles/PM10, fine particles/PM2.5, and ultrafine particles/PM0.1. The gaseous components include ground-level ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide. The timing, load, and route of allergen exposure are other items affecting allergic disease phenotypes. The complex interaction between pollutant exposures and human host factors has an implication in the development and rise of asthma as a public health problem. However, there are hiatuses in the understanding of the pathways in this disease. The routes through which pollutants induce asthma are multiple, and include the epigenetic changes that occur in the respiratory tract microbiome, oxidative stress, and immune dysregulation. In addition, the expansion of the modern Westernized lifestyle, which is characterized by intense urbanization and more time spent indoors, resulted in greater exposure to polluted air. Another point to consider is the different role of the environment according to age groups. Children growing up in economically disadvantaged neighborhoods suffer more important negative health impacts. This narrative review highlights the principal polluting agents, their sources of emission, epidemiological findings, and mechanistic evidence that links environmental exposures to asthma.
Palavras-chave
Air pollution, Particulate matter, Asthma
Referências
  1. Abramson MJ, 2019, AM J RESP CRIT CARE, V200, P652, DOI 10.1164/rccm.201904-0842ED
  2. Achakulwisut P, 2019, LANCET PLANET HEALTH, V3, pE166, DOI 10.1016/S2542-5196(19)30046-4
  3. Agache I, 2019, ALLERGY, V74, P449, DOI 10.1111/all.13690
  4. Alhamwe BA, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01747
  5. Alotaibi R, 2019, ENVIRON INT, V127, P858, DOI 10.1016/j.envint.2019.03.041
  6. Anenberg SC, 2020, GEOHEALTH, V4, DOI 10.1029/2020GH000270
  7. Anenberg SC, 2018, ENVIRON HEALTH PERSP, V126, DOI [10.1289/EHP3766, 10.1289/ehp3766]
  8. Arbex MA, 2007, J EPIDEMIOL COMMUN H, V61, P395, DOI 10.1136/jech.2005.044743
  9. Arbex MA, 2012, J BRAS PNEUMOL, V38, P643, DOI 10.1590/S1806-37132012000500015
  10. Baldacci S, 2015, RESP MED, V109, P1089, DOI 10.1016/j.rmed.2015.05.017
  11. Beamer PI, 2019, AM J RESP CRIT CARE, V200, P1, DOI 10.1164/rccm.201903-0579ED
  12. Koh HY, 2019, J ALLER CL IMM-PRACT, V7, P2912, DOI 10.1016/j.jaip.2019.05.015
  13. Krishnan S, 2018, INDIAN J PEDIATR, V85, P893, DOI 10.1007/s12098-018-2691-3
  14. Kunzli N, 2009, THORAX, V64, P664, DOI 10.1136/thx.2008.110031
  15. Landrigan PJ, 2018, LANCET, V391, P462, DOI 10.1016/S0140-6736(17)32345-0
  16. Lee SW, 2019, J ALLERGY CLIN IMMUN, V144, P1542, DOI 10.1016/j.jaci.2019.08.037
  17. Leikauf GD, 2020, EXP MOL MED, V52, P329, DOI 10.1038/s12276-020-0394-0
  18. Li MH, 2016, CHEST, V149, P447, DOI 10.1378/chest.15-0513
  19. Li N, 2016, J ALLERGY CLIN IMMUN, V138, P386, DOI 10.1016/j.jaci.2016.02.023
  20. Li X, 2019, SCI TOTAL ENVIRON, V691, P549, DOI 10.1016/j.scitotenv.2019.06.382
  21. Li Y, 2010, SCI TOTAL ENVIRON, V408, P1226, DOI 10.1016/j.scitotenv.2009.11.035
  22. Molter A, 2015, EUR RESPIR J, V45, P610, DOI 10.1183/09031936.00083614
  23. Liu C, 2019, NEW ENGL J MED, V381, P705, DOI 10.1056/NEJMoa1817364
  24. Liu H, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-31434-1
  25. Liu YW, 2019, AM J RESP CRIT CARE, V200, P24, DOI 10.1164/rccm.201810-1823OC
  26. MacIntyre EA, 2014, ENVIRON HEALTH PERSP, V122, P107, DOI 10.1289/ehp.1306755
  27. MacNee W, 2003, EUR RESPIR J, V21, p47S, DOI 10.1183/09031936.03.00403203
  28. Madl AK, 2014, ANNU REV PHYSIOL, V76, P447, DOI 10.1146/annurev-physiol-030212-183735
  29. Manisalidis I, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00014
  30. Martins LC, 2002, J OCCUP ENVIRON MED, V44, P622, DOI 10.1097/00043764-200207000-00006
  31. Mascarenhas Márcio Dênis Medeiros, 2008, J. bras. pneumol., V34, P42, DOI 10.1590/S1806-37132008000100008
  32. McConnell R, 2002, LANCET, V359, P386, DOI 10.1016/S0140-6736(02)07597-9
  33. Nascimento Saldiva, 2006, J BRAS PNEUMOL, V32, P5, DOI [10.1590/S1806-37132006000800003, DOI 10.1590/S1806-37132006000800003]
  34. Ohara Y, 2020, FUKUSHIMA J MED SCI, V66, P78, DOI 10.5387/fms.2019-02
  35. Orellano P, 2018, J ASTHMA, V55, P1174, DOI 10.1080/02770903.2017.1402342
  36. Orellano P, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0174050
  37. Perez L, 2013, EUR RESPIR J, V42, P594, DOI 10.1183/09031936.00031112
  38. Perez L, 2012, ENVIRON HEALTH PERSP, V120, P1619, DOI 10.1289/ehp.1104785
  39. Ponte EV, 2018, CLIN RESPIR J, V12, P410, DOI 10.1111/crj.12530
  40. Pope CA, 2020, ENVIRON RES, V183, DOI 10.1016/j.envres.2019.108924
  41. Pope CA, 2019, ENVIRON HEALTH PERSP, V127, DOI 10.1289/EHP4438
  42. Schraufnagel DE, 2019, CHEST, V155, P417, DOI 10.1016/j.chest.2018.10.041
  43. Rage E, 2009, OCCUP ENVIRON MED, V66, P182, DOI 10.1136/oem.2007.038349
  44. Rajagopalan S, 2018, J AM COLL CARDIOL, V72, P2054, DOI 10.1016/j.jacc.2018.07.099
  45. Rao XQ, 2018, ANTIOXID REDOX SIGN, V28, P797, DOI 10.1089/ars.2017.7394
  46. Ribeiro-Silva RC, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15122904
  47. Rice MB, 2018, J ALLERGY CLIN IMMUN, V141, P1932, DOI 10.1016/j.jaci.2017.11.062
  48. Rodriguez A, 2019, THORAX, V74, P1020, DOI 10.1136/thoraxjnl-2018-211793
  49. Samoli E, 2011, ENVIRON RES, V111, P418, DOI 10.1016/j.envres.2011.01.014
  50. Schaumann F, 2014, PART FIBRE TOXICOL, V11, DOI 10.1186/s12989-014-0039-3
  51. Schraufnagel DE, 2020, EXP MOL MED, V52, P311, DOI 10.1038/s12276-020-0403-3
  52. Schraufnagel DE, 2019, CHEST, V155, P409, DOI 10.1016/j.chest.2018.10.042
  53. Scibor M, 2020, INT J OCCUP MED ENV, V33, P311, DOI 10.13075/ijomeh.1896.01527
  54. Sly PD, 2019, AM J RESP CRIT CARE, V200, P1062, DOI 10.1164/rccm.201903-0675LE
  55. Sompornrattanaphan M, 2020, ASIAN PAC J ALLERGY, V38, P19, DOI 10.12932/AP-100619-0579
  56. Sorek-Hamer M, 2016, CURR OPIN PEDIATR, V28, P228, DOI 10.1097/MOP.0000000000000326
  57. Stanaway JD, 2018, LANCET, V392, P1923, DOI [10.1016/S0140-6736(18)32225-6, 10.1016/s0140-6736(18)32225-6]
  58. Thurston GD, 2020, ANN AM THORAC SOC, V17, P387, DOI 10.1513/AnnalsATS.202001-046ST
  59. Thurston GD, 2017, EUR RESPIR J, V49, DOI 10.1183/13993003.00419-2016
  60. Tiotiu AI, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17176212
  61. United States Environmental Protection Agency, 2018, INT SCI ASS ISA PART
  62. Berman JD, 2020, SCI TOTAL ENVIRON, V739, DOI 10.1016/j.scitotenv.2020.139864
  63. United States Environmental Protection Agency, 2016, INT SCI ASS ISA NITR
  64. Veremchuk LV, 2018, ENVIRON POLLUT, V235, P489, DOI 10.1016/j.envpol.2017.12.122
  65. Watts J, 2006, LANCET, V368, P719, DOI 10.1016/S0140-6736(06)69267-2
  66. Weichenthal S, 2017, ENVIRON HEALTH-GLOB, V16, DOI 10.1186/s12940-017-0276-7
  67. Wheeler, 2018, US ENV PROTECTION AG
  68. WHO, 2018, HOUSEHOLD AIR POLLUT
  69. WHO, 2006, WHOSDEPHEOEH0602
  70. WHO, 2018, AMB OUTD AIR POLL 20
  71. Young MT, 2014, AM J RESP CRIT CARE, V190, P914, DOI 10.1164/rccm.201403-0525OC
  72. Zhao YJ, 2019, SCI TOTAL ENVIRON, V668, P254, DOI 10.1016/j.scitotenv.2019.02.333
  73. Bowatte G, 2018, ENVIRON INT, V113, P170, DOI 10.1016/j.envint.2018.01.028
  74. Breysse Patrick N, 2010, Proc Am Thorac Soc, V7, P102, DOI 10.1513/pats.200908-083RM
  75. Burnett R, 2018, P NATL ACAD SCI USA, V115, P9592, DOI 10.1073/pnas.1803222115
  76. Cai YT, 2017, EUR RESPIR J, V49, DOI 10.1183/13993003.02127-2015
  77. Cakmak S, 2012, J ALLERGY CLIN IMMUN, V129, P228, DOI 10.1016/j.jaci.2011.09.025
  78. Cecchi L, 2018, J ALLERGY CLIN IMMUN, V141, P846, DOI 10.1016/j.jaci.2018.01.016
  79. Cereceda-Balic F, 2017, SCI TOTAL ENVIRON, V584, P901, DOI 10.1016/j.scitotenv.2017.01.136
  80. Clifford S, 2018, ENVIRON INT, V114, P167, DOI 10.1016/j.envint.2018.02.019
  81. Cohen AJ, 2017, LANCET, V389, P1907, DOI [10.1016/S0140-6736(17)30505-6, 10.1016/s0140-6736(17)30505-6]
  82. Cromar KR, 2019, ANN AM THORAC SOC, V16, P1207, DOI 10.1513/AnnalsATS.201906-477ST
  83. D'Amato G, 2016, MULTIDISCIP RESP MED, V11, DOI 10.1186/s40248-016-0073-0
  84. Diaz-Robles LA, 2014, ENVIRON INT, V66, P174, DOI 10.1016/j.envint.2014.01.017
  85. Dong Guang-Hui, 2011, PLoS One, V6, pe22470, DOI 10.1371/journal.pone.0022470
  86. Dutheil F, 2020, CHEST, V158, P467, DOI 10.1016/j.chest.2020.03.062
  87. Ebmeier S, 2017, LANCET, V390, P935, DOI [10.1016/S0140-6736(17)31448-4, 10.1016/s0140-6736(17)31448-4]
  88. Eguiluz-Gracia I, 2020, ALLERGY, V75, P2170, DOI 10.1111/all.14177
  89. Eguiluz-Gracia I, 2018, ALLERGY, V73, P2290, DOI 10.1111/all.13628
  90. Esposito S, 2014, BMC PULM MED, V14, DOI 10.1186/1471-2466-14-130
  91. Esposito S, 2014, BMC PULM MED, V14, DOI 10.1186/1471-2466-14-31
  92. European Environment Agency, 2018, EEA Report, DOI 10.2800/777411
  93. Evans KA, 2014, ENVIRON RES, V129, P11, DOI 10.1016/j.envres.2013.12.001
  94. Friedman MS, 2001, JAMA-J AM MED ASSOC, V285, P897, DOI 10.1001/jama.285.7.897
  95. Fuertes E, 2020, ENVIRON INT, V136, DOI 10.1016/j.envint.2020.105474
  96. Garcia E, 2019, JAMA-J AM MED ASSOC, V321, P1906, DOI 10.1001/jama.2019.5357
  97. GBD 2017 Gastrooesophageal, 2020, LANCET GASTROENTEROL, V5, P561, DOI 10.1016/S2468-1253(19)30408-X
  98. Gehring U, 2020, EUR RESPIR J, V56, DOI 10.1183/13993003.00147-2020
  99. Gehring U, 2010, AM J RESP CRIT CARE, V181, P596, DOI 10.1164/rccm.200906-0858OC
  100. Global Astma Network, 2018, GLOB ASTHM REP 2018
  101. Global Initiative for Asthma, 2020, 2020 GINA REP GLOB S
  102. Government of Canada, 2016, HUM HLTH RISK ASS AM
  103. Gowers AM, 2012, RESPIROLOGY, V17, P887, DOI 10.1111/j.1440-1843.2012.02195.x
  104. Gruzieva O, 2014, J ALLERGY CLIN IMMUN, V133, P767, DOI 10.1016/j.jaci.2013.07.048
  105. Guarnieri M, 2014, LANCET, V383, P1581, DOI 10.1016/S0140-6736(14)60617-6
  106. Guilbert A, 2018, ENVIRON HEALTH-GLOB, V17, DOI 10.1186/s12940-018-0378-x
  107. Haahtela T, 2019, CLIN TRANSL ALLERGY, V9, DOI 10.1186/s13601-019-0295-2
  108. Hassoun Y, 2019, CLIN REV ALLERG IMMU, V57, P403, DOI 10.1007/s12016-019-08730-3
  109. Havet A, 2019, ENVIRON HEALTH-GLOB, V18, DOI 10.1186/s12940-019-0532-0
  110. Havet A, 2018, EUR RESPIR J, V51, DOI 10.1183/13993003.02036-2017
  111. Herbert C, 2017, EUR RESPIR J, V49, DOI 10.1183/13993003.00230-2017
  112. Hew KM, 2015, CLIN EXP ALLERGY, V45, P238, DOI 10.1111/cea.12377
  113. Hulin M, 2012, EUR RESPIR J, V40, P1033, DOI 10.1183/09031936.00159011
  114. Hutchinson JA, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002601
  115. Jacquemin B, 2015, ENVIRON HEALTH PERSP, V123, P613, DOI 10.1289/ehp.1408206
  116. Jacquemin B, 2012, SEMIN RESP CRIT CARE, V33, P606, DOI 10.1055/s-0032-1325191
  117. Ji H, 2016, ALLERGY ASTHMA CL IM, V12, DOI 10.1186/s13223-016-0159-4
  118. Khreis H, 2019, EUR RESPIR J, V54, DOI 10.1183/13993003.02194-2018
  119. Khreis H, 2018, ENVIRON INT, V114, P365, DOI 10.1016/j.envint.2018.03.008
  120. Khreis H, 2017, ENVIRON INT, V100, P1, DOI 10.1016/j.envint.2016.11.012