Factors associated with incomplete vaccination and negative antibody test results for measles, mumps, and hepatitis A among children followed in the MINA-BRAZIL cohort

Imagem de Miniatura
Citações na Scopus
Tipo de produção
Data de publicação
Título da Revista
ISSN da Revista
Título do Volume
Projetos de Pesquisa
Unidades Organizacionais
Vaccination coverage has been dropping in Brazil and other countries. In addition, immune responses after vaccination may not be homogeneous, varying according to sociodemographic and clinical factors. Understanding the determinants of incomplete vaccination and negative antibody test results may contribute to the development of strategies to improve vaccination effectiveness. In this study, we aimed to investigate the frequency of vaccine adherence, factors associated with incomplete vaccination for measles, mumps, rubella (MMR) and hepatitis A, and factors associated with the seronegative test results for measles, mumps and hepatitis A at 2 years of age. This was a population-based cohort that addressed health conditions and mother/infant nutrition in Cruzeiro do Sul city, Brazil. Vaccination data were obtained from official certificates of immunization. The children underwent blood collection at the two-year -old follow-up visit; the samples were analyzed using commercially available kits to measure seropositivity for measles, mumps, and hepatitis A. We used modified Poisson regression models adjusted for covariates to identify factors associated with incomplete vaccination and negative serology after vaccination. Out of the 825 children included in the study, adherence to the vaccine was 90.6% for MMR, 76.7% for the MMRV (MMR + varicella), and 74.9% for the hepatitis A vaccine. For MMR, after the adjustment for covariates, factors associated with incomplete vaccination included: white-skinned mother; paid maternity leave; raising more than one child; lower number of antenatal consultations; and attending childcare. For hepatitis A, the factors included: white-skinned mother and not having a cohabiting partner. The factors with statistically significant association with a negative antibody test result included: receiving Bolsa Familia allowance for measles and mumps; incomplete vaccination for measles; and vitamin A deficiency for mumps. Strategies to improve the efficiency of vaccine programs are urgently needed. These include improvements in communication about vaccine safety and efficacy, and amplification of access to primary care facilities, prioritizing children exposed to the sociodemographic factors identified in this study. Additionally, sociodemographic factors and vitamin A deficiency may impact the immune responses to vaccines, leading to an increased risk of potentially severe and preventable diseases.
Vaccines, Measles, Mumps, Hepatitis A, Antibodies
  1. Abarca K, 2011, VACCINE, V29, P8855, DOI 10.1016/j.vaccine.2011.09.095
  2. Barbieri CLA, 2017, CAD SAUDE PUBLICA, V33, DOI [10.1590/0102-311x00173315, 10.1590/0102-311X00173315, 10.15900102-311X001733/15]
  3. [Anonymous], 2020, VACINAS VACINACAO NO
  4. Bahl R, 2002, EUR J CLIN NUTR, V56, P321, DOI 10.1038/sj.ejcn.1601325
  5. Barata Rita Barradas, 2013, Rev. bras. epidemiol., V16, P266, DOI 10.1590/S1415-790X2013000200004
  6. Barata RB, 2012, J EPIDEMIOL COMMUN H, V66, P934, DOI 10.1136/jech-2011-200341
  7. Bondy JN, 2009, VACCINE, V27, P169, DOI 10.1016/j.vaccine.2008.08.042
  8. Brasil. Ministerio da Saride, SI PNI SISTEMA INFOR
  9. Brasil. Ministerio da Saride, 2013, MANUAL CONDUTAS GERA
  10. Brasil. Ministerio da Saride, 2010, SECRETARIA ATENCAO P, V5
  11. Brasil. Ministerio da Saude, CALENDARIO NACL VACI
  12. Brasil. Ministerio ds Saude. DATASUS, SISTEMA INFORMACOES
  13. Buffarini R, 2020, ARCH PUBLIC HEALTH, V78, DOI 10.1186/s13690-020-00403-4
  14. Cardoso MA, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2019-034513
  15. Yokokura AVCP, 2013, CAD SAUDE PUBLICA, V29, P522, DOI 10.1590/S0102-311X2013000300010
  16. Chen WS, 2018, BMC MED RES METHODOL, V18, DOI 10.1186/s12874-018-0519-5
  17. Aps LRDM, 2018, REV SAUDE PUBL, V52, DOI [10.11606/s1518-8787.2018052000384, 10.11606/S1518-8787.2018052000384]
  18. Filmer D, 2001, DEMOGRAPHY, V38, P115, DOI 10.2307/3088292
  19. Fritzsche C, 2019, VACCINE, V37, P2278, DOI 10.1016/j.vaccine.2019.02.064
  20. Gaayeb L, 2014, VACCINE, V32, P3431, DOI 10.1016/j.vaccine.2014.03.086
  22. Haque R, 2014, VACCINE, V32, P478, DOI 10.1016/j.vaccine.2013.11.056
  23. Jain H, 2014, HUM VACC IMMUNOTHER, V10, P2089, DOI 10.4161/hv.28631
  24. Kizito D, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-619
  25. McClure CC, 2017, CLIN THER, V39, P1550, DOI 10.1016/j.clinthera.2017.07.003
  26. Mutua Martin Kavao, 2016, Trop Med Health, V44, P13, DOI 10.1186/s41182-016-0013-x
  27. Patel N, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11100907
  28. Penkert RR, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01576
  29. Queiroz Lorena Lauren Chaves, 2013, Cad. Saúde Pública, V29, P294, DOI 10.1590/S0102-311X2013000200016
  30. Sao Paulo. Secretaria da Saude, CALENDARIO VACINAL
  31. Schenk J, 2021, LANCET INFECT DIS, V21, P286, DOI 10.1016/S1473-3099(20)30442-4
  32. Silva FD, 2018, CAD SAUDE PUBLICA, V34, DOI 10.1590/0102-311X00041717
  33. Tauil MD, 2017, EPIDEMIOL SERV SAUDE, V26, P835, DOI [10.5123/S1679-49742017000400014, 10.5123/s1679-49742017000400014]
  34. Temporão José Gomes, 2003, Hist. cienc. saude-Manguinhos, V10, P601, DOI 10.1590/S0104-59702003000500008
  35. Victora CG, 1997, INT J EPIDEMIOL, V26, P224, DOI 10.1093/ije/26.1.224
  36. Wiysonge CS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037905
  37. Zhang L, 2020, HUM VACC IMMUNOTHER, V16, P1565, DOI 10.1080/21645515.2020.1769389
  38. Zimmermann P, 2019, CLIN MICROBIOL REV, V32, DOI 10.1128/CMR.00084-18