Effect of Continuous Positive Airway Pressure on Lipid Profiles in Obstructive Sleep Apnea: A Meta-Analysis

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
CHEN, Baixin
GUO, Miaolan
PEKER, Yueksel
SALORD, Neus
TANG, Xiangdong
LI, Yun
Citação
JOURNAL OF CLINICAL MEDICINE, v.11, n.3, article ID 596, 10p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Obstructive sleep apnea (OSA) is associated with dyslipidemia. However, the effects of continuous positive airway pressure (CPAP) treatment on lipid profiles are unclear. Methods: PubMed/Medline, Embase and Cochrane were searched up to July 2021. Randomized controlled trials (RCTs) of CPAP versus controls with >= 4 weeks treatment and reported pre- and post-intervention lipid profiles were included. Weighted mean difference (WMD) was used to assess the effect size. Meta-regression was used to explore the potential moderators of post-CPAP treatment changes in lipid profiles. Results: A total of 14 RCTs with 1792 subjects were included. CPAP treatment was associated with a significant decrease in total cholesterol compared to controls (WMD = -0.098 mmol/L, 95% CI = -0.169 to -0.027, p = 0.007, I-2 = 0.0%). No significant changes in triglyceride, high-density lipoprotein nor low-density lipoprotein were observed after CPAP treatment (all p > 0.2). Furthermore, meta-regression models showed that age, gender, body mass index, daytime sleepiness, OSA severity, follow-up study duration, CPAP compliance nor patients with cardiometabolic disease did not moderate the effects of CPAP treatment on lipid profiles (all p > 0.05). Conclusions: CPAP treatment decreases total cholesterol at a small magnitude but has no effect on other markers of dyslipidemia in OSA patients. Future studies of CPAP therapy should target combined treatment strategies with lifestyle modifications and/or anti-hyperlipidemic medications in the primary as well as secondary cardiovascular prevention models.
Palavras-chave
obstructive sleep apnea, continuous positive airway pressure, lipid profile, total cholesterol
Referências
  1. Barros D, 2019, SLEEP, V42, DOI 10.1093/sleep/zsy236
  2. Benjafield AV, 2019, LANCET RESP MED, V7, P687, DOI 10.1016/S2213-2600(19)30198-5
  3. Binar M, 2017, EUR ARCH OTO-RHINO-L, V274, P829, DOI 10.1007/s00405-016-4290-0
  4. Borovac JA, 2019, SLEEP BREATH, V23, P473, DOI 10.1007/s11325-018-1703-x
  5. BRINDLEY DN, 1993, METABOLISM, V42, P3, DOI 10.1016/0026-0495(93)90255-M
  6. Celik Y, 2022, J CLIN MED, V11, DOI 10.3390/jcm11010273
  7. Chen BX, 2021, NAT SCI SLEEP, V13, P339, DOI 10.2147/NSS.S297707
  8. Chen L, 2005, AM J RESP CRIT CARE, V172, P915, DOI 10.1164/rccm.200504-560OC
  9. Chirinos JA, 2014, NEW ENGL J MED, V370, P2265, DOI 10.1056/NEJMoa1306187
  10. Chopra S, 2017, J CLIN ENDOCR METAB, V102, P3172, DOI 10.1210/jc.2017-00619
  11. Cochrane Collaboration, COCHRANE HDB SYSTEMA
  12. Comondore VR, 2009, LUNG, V187, P17, DOI 10.1007/s00408-008-9115-5
  13. Coughlin SR, 2007, EUR RESPIR J, V29, P720, DOI 10.1183/09031936.00043306
  14. Drager LF, 2013, J AM COLL CARDIOL, V62, P569, DOI 10.1016/j.jacc.2013.05.045
  15. Drager LF, 2013, AM J RESP CRIT CARE, V188, P240, DOI 10.1164/rccm.201209-1688OC
  16. Drager LF, 2012, EUR HEART J, V33, P783, DOI 10.1093/eurheartj/ehr097
  17. Ference BA, 2018, J AM COLL CARDIOL, V72, P1141, DOI 10.1016/j.jacc.2018.06.046
  18. Gunduz C, 2018, RESPIROLOGY, V23, P1180, DOI 10.1111/resp.13372
  19. Higgins JPT, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d5928
  20. Iannella G, 2022, AM J OTOLARYNG, V43, DOI 10.1016/j.amjoto.2021.103197
  21. Katcher HI, 2009, ENDOCRIN METAB CLIN, V38, P45, DOI 10.1016/j.ecl.2008.11.010
  22. Li JG, 2005, J APPL PHYSIOL, V99, P1643, DOI 10.1152/japplphysiol.00522.2005
  23. Lin MT, 2015, SLEEP BREATH, V19, P809, DOI 10.1007/s11325-014-1082-x
  24. Marin JM, 2005, LANCET, V365, P1046, DOI 10.1016/S0140-6736(05)71141-7
  25. Mesarwi OA, 2019, AM J RESP CRIT CARE, V199, P830, DOI 10.1164/rccm.201806-1109TR
  26. Monneret D, 2017, SLEEP MED, V39, P14, DOI 10.1016/j.sleep.2017.07.028
  27. Nadeem R, 2014, J CLIN SLEEP MED, V10, P1295, DOI 10.5664/jcsm.4282
  28. Nguyen PK, 2010, J CARDIOVASC MAGN R, V12, DOI 10.1186/1532-429X-12-50
  29. Peker Y, 2016, AM J RESP CRIT CARE, V194, P613, DOI 10.1164/rccm.201601-0088OC
  30. Peppard PE, 2013, AM J EPIDEMIOL, V177, P1006, DOI 10.1093/aje/kws342
  31. Phillips CL, 2011, AM J RESP CRIT CARE, V184, P355, DOI 10.1164/rccm.201102-0316OC
  32. Robinson GV, 2004, THORAX, V59, P777, DOI 10.1136/thx.2003.018739
  33. Savransky V, 2008, CIRC RES, V103, P1173, DOI 10.1161/CIRCRESAHA.108.178533
  34. Schmoller A, 2009, METABOLISM, V58, P848, DOI 10.1016/j.metabol.2009.02.014
  35. Shamseer L, 2015, BMJ-BRIT MED J, V349, DOI [10.1136/bmj.g7647, 10.1186/2046-4053-4-1, 10.1016/j.ijsu.2010.02.007, 10.1136/bmj.i4086, 10.1136/bmj.b2535]
  36. Shang WL, 2021, DIABETES OBES METAB, V23, P540, DOI 10.1111/dom.14247
  37. Sharma SK, 2011, NEW ENGL J MED, V365, P2277, DOI 10.1056/NEJMoa1103944
  38. Thornton A, 2000, J CLIN EPIDEMIOL, V53, P207, DOI 10.1016/S0895-4356(99)00161-4
  39. Toyama Y, 2013, CHEST, V143, P720, DOI 10.1378/chest.12-0338
  40. Trzepizur W, 2013, CHEST, V143, P1584, DOI 10.1378/chest.12-1652
  41. Vasquez MM, 2008, J CLIN SLEEP MED, V4, P411
  42. Xu HJ, 2014, ATHEROSCLEROSIS, V234, P446, DOI 10.1016/j.atherosclerosis.2014.03.034