Lung Injury Is Induced by Abrupt Increase in Respiratory Rate but Prevented by Recruitment Maneuver in Mild Acute Respiratory Distress Syndrome in Rats

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
XAVIER, Paulo Henrique
FONSECA, Ana Carolina Fernandes
GONCALVES, Leonardo Alves
SOUSA, Giselle Cavalho de
SILVA, Mariana Coelho da
SACRAMENTO, Raquel Ferreira de Magalhaes
SAMARY, Cynthia dos Santos
MEDEIROS, Mayck
CRUZ, Fernanda Ferreira
Citação
ANESTHESIOLOGY, v.138, n.4, p.420-435, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background:Gradually changing respiratory rate (RR) during time to reduce ventilation-induced lung injury has not been investigated. The authors hypothesized that gradual, compared with abrupt, increments in RR would mitigate ventilation-induced lung injury and that recruitment maneuver before abruptly increasing RR may prevent injurious biologic impact. Methods:Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, 49 male Wistar rats were anesthetized and mechanically ventilated (tidal volume, 6 ml/kg; positive end-expiratory pressure, 3 cm H2O) with RR increase patterns as follows (n = 7 per group): (1) control 1, RR = 70 breaths/min for 2 h; (2) and (3) abrupt increases of RR for 1 and 2 h, respectively, both for 2 h; (4) shorter RR adaptation, gradually increasing RR (from 70 to 130 breaths/min during 30 min); (5) longer RR adaptation, more gradual increase in RR (from 70 to 130 breaths/min during 60 min), both for 2 h; (6) control 2, abrupt increase of RR maintained for 1 h; and (7) control 3, recruitment maneuver (continuous positive airway pressure, 30 cm H2O for 30 s) followed by control-2 protocol. Results:At the end of 1 h of mechanical ventilation, cumulative diffuse alveolar damage scores were lower in shorter (11.0 [8.0 to 12.0]) and longer (13.0 [11.0 to 14.0]) RR adaptation groups than in animals with abrupt increase of RR for 1 h (25.0 [22.0 to 26.0], P = 0.035 and P = 0.048, respectively) and 2 h (35.0 [32.0 to 39.0], P = 0.003 and P = 0.040, respectively); mechanical power and lung heterogeneity were lower, and alveolar integrity was higher, in the longer RR adaptation group compared with abruptly adjusted groups; markers of lung inflammation (interleukin-6), epithelial (club cell secretory protein [CC-16]) and endothelial cell damage (vascular cell adhesion molecule 1 [VCAM-1]) were higher in both abrupt groups, but not in either RR adaptation group, compared with controls. Recruitment maneuver prevented the increase in VCAM-1 and CC-16 gene expressions in the abruptly increased RR groups. Conclusions:In mild experimental acute respiratory distress syndrome in rats, gradually increasing RR, compared with abruptly doing so, can mitigate the development of ventilation-induced lung injury. In addition, recruitment maneuver prevented the injurious biologic impact of abrupt increases in RR.
Palavras-chave
Referências
  1. Akamine R, 2007, J BIOCHEM BIOPH METH, V70, P481, DOI 10.1016/j.jbbm.2006.11.008
  2. Amato MBP, 2015, NEW ENGL J MED, V372, P747, DOI 10.1056/NEJMsa1410639
  3. Brower RG, 2000, NEW ENGL J MED, V342, P1301, DOI 10.1056/nejm200005043421801
  4. Clayton JA, 2014, NATURE, V509, P282, DOI 10.1038/509282a
  5. Conrad SA, 2005, CRIT CARE MED, V33, P835, DOI 10.1097/01.CCM.0000159532.56865.8A
  6. Cook-Mills JM, 2011, ANTIOXID REDOX SIGN, V15, P1607, DOI 10.1089/ars.2010.3522
  7. Costa ELV, 2021, AM J RESP CRIT CARE, V204, P303, DOI 10.1164/rccm.202009-3467OC
  8. Cressoni M, 2016, ANESTHESIOLOGY, V124, P1100, DOI 10.1097/ALN.0000000000001056
  9. Del Sorbo L, 2019, INTENS CARE MED, V45, P1436, DOI 10.1007/s00134-019-05734-7
  10. du Sert NP, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000410
  11. Faffe DS, 2009, PHYSIOL REV, V89, P759, DOI 10.1152/physrev.00019.2007
  12. Felix NS, 2019, ANESTHESIOLOGY, V130, P767, DOI 10.1097/ALN.0000000000002630
  13. Fernandes MVS, 2022, J APPL PHYSIOL, V132, P375, DOI 10.1152/japplphysiol.00613.2021
  14. Gattinoni L, 2016, INTENS CARE MED, V42, P1567, DOI 10.1007/s00134-016-4505-2
  15. Hotchkiss JR, 2000, AM J RESP CRIT CARE, V161, P463, DOI 10.1164/ajrccm.161.2.9811008
  16. Hsia CCW, 2010, AM J RESP CRIT CARE, V181, P394, DOI 10.1164/rccm.200809-1522ST
  17. Katira BH, 2017, AM J RESP CRIT CARE, V196, P1411, DOI 10.1164/rccm.201611-2268OC
  18. Kiss T, 2016, BRIT J ANAESTH, V116, P708, DOI 10.1093/bja/aew093
  19. Kropski JA, 2009, CHEST, V135, P1440, DOI 10.1378/chest.08-2465
  20. Lopez-Alonso I, 2019, INTENS CARE MED EXP, V7, DOI 10.1186/s40635-019-0222-9
  21. Marini JJ, 2018, ANESTHESIOLOGY, V128, P1062, DOI 10.1097/ALN.0000000000002203
  22. Marini JJ, 2016, INTENS CARE MED, V42, P1597, DOI 10.1007/s00134-016-4534-x
  23. Matute-Bello G, 2011, AM J RESP CELL MOL, V44, P725, DOI 10.1165/rcmb.2009-0210ST
  24. Moraes L, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00318
  25. Moriondo A, 2012, RESP PHYSIOL NEUROBI, V181, P308, DOI 10.1016/j.resp.2012.03.013
  26. MORTOLA JP, 1983, J APPL PHYSIOL, V55, P250, DOI 10.1152/jappl.1983.55.1.250
  27. Motta-Ribeiro GC, 2018, AM J RESP CRIT CARE, V198, P891, DOI 10.1164/rccm.201710-2038OC
  28. Parameswaran H, 2006, J APPL PHYSIOL, V100, P186, DOI 10.1152/japplphysiol.00424.2005
  29. Paula LF, 2016, J APPL PHYSIOL, V121, P1335, DOI 10.1152/japplphysiol.00861.2015
  30. Pinto EF, 2020, ANESTHESIOLOGY, V132, P307, DOI 10.1097/ALN.0000000000003060
  31. Protti A, 2016, CRIT CARE MED, V44, pE838, DOI 10.1097/CCM.0000000000001718
  32. Retamal J, 2016, ACTA ANAESTH SCAND, V60, P1131, DOI 10.1111/aas.12735
  33. Rich PB, 2000, J TRAUMA, V49, P903, DOI 10.1097/00005373-200011000-00019
  34. Riva DR, 2008, CRIT CARE MED, V36, P1900, DOI 10.1097/CCM.0b013e3181760e5d
  35. Samary CS, 2016, CRIT CARE MED, V44, pE553, DOI 10.1097/CCM.0000000000001611
  36. Samary CS, 2015, ANESTHESIOLOGY, V123, P423, DOI 10.1097/ALN.0000000000000716
  37. Santos RS, 2018, ANESTHESIOLOGY, V128, P1193, DOI 10.1097/ALN.0000000000002143
  38. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  39. Neto AS, 2018, INTENS CARE MED, V44, P1914, DOI 10.1007/s00134-018-5375-6
  40. Silva PL, 2013, CRIT CARE MED, V41, pE256, DOI 10.1097/CCM.0b013e31828a3c13
  41. Silva PL, 2019, INTENS CARE MED EXP, V7, DOI 10.1186/s40635-019-0243-4
  42. Uhlig C, 2014, RESP RES, V15, DOI 10.1186/1465-9921-15-56
  43. Vaporidi K, 2008, CRIT CARE MED, V36, P1277, DOI 10.1097/CCM.0b013e318169f30e
  44. Wallace MJ, 2009, RESP RES, V10, DOI 10.1186/1465-9921-10-19
  45. WEBB HH, 1974, AM REV RESPIR DIS, V110, P556
  46. Weber A, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-51024-z
  47. Wierzchon CGRS, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.01071