Integrating artificial intelligence and wing geometric morphometry to automate mosquito classification

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
Citação
ACTA TROPICA, v.249, article ID 107089, 7p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Mosquitoes (Diptera: Culicidae) comprise over 3500 global species, primarily in tropical regions, where the females act as disease vectors. Thus, identifying medically significant species is vital. In this context, Wing Geometric Morphometry (WGM) emerges as a precise and accessible method, excelling in species differentiation through mathematical approaches. Computational technologies and Artificial Intelligence (AI) promise to overcome WGM challenges, supporting mosquito identification. AI explores computers' thinking capacity, originating in the 1950s. Machine Learning (ML) arose in the 1980s as a subfield of AI, and deep Learning (DL) characterizes ML's subcategory, featuring hierarchical data processing layers. DL relies on data volume and layer adjustments. Over the past decade, AI demonstrated potential in mosquito identification. Various studies employed optical sensors, and Convolutional Neural Networks (CNNs) for mosquito identification, achieving average accuracy rates between 84 % and 93 %. Furthermore, larval Aedes identification reached accuracy rates of 92 % to 94 % using CNNs. DL models such as ResNet50 and VGG16 achieved up to 95 % accuracy in mosquito identification. Applying CNNs to georeference mosquito photos showed promising results. AI algorithms automated landmark detection in various insects' wings with repeatability rates exceeding 90 %. Companies have developed wing landmark detection algorithms, marking significant advancements in the field. In this review, we discuss how AI and WGM are being combined to identify mosquito species, offering benefits in monitoring and controlling mosquito populations.
Palavras-chave
Mosquito-borne diseases, Species identification, Integrative approach
Referências
  1. Adams DC, 2013, METHODS ECOL EVOL, V4, P393, DOI 10.1111/2041-210X.12035
  2. Agnew P, 1997, P ROY SOC B-BIOL SCI, V264, P9, DOI 10.1098/rspb.1997.0002
  3. Arista-Jalife A, 2020, KNOWL-BASED SYST, V189, DOI 10.1016/j.knosys.2019.07.012
  4. Asmai S., 2019, Int. J. Innov. Technol. Explor. Eng., V8, P804, DOI [10.35940/ijitee.L3213.1081219, DOI 10.35940/IJITEE.L3213.1081219]
  5. Bonnan MF, 2007, ANAT REC, V290, P1089, DOI 10.1002/ar.20578
  6. Wilke ABB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161643
  7. Calle DA, 2002, MEM I OSWALDO CRUZ, V97, P1191, DOI 10.1590/S0074-02762002000800021
  8. Camargo-Neves V.L.F., 2021, Stricto Sensu, P197
  9. Cardillo M., 2010, Morphometrics for Nonmorphometricians, P325, DOI [DOI 10.1007/978-3-540-95853-6_15, 10.1007/978-3-540-95853-6_15]
  10. Chollet F., 2021, Deep Learning with Python, V2nd, P814
  11. Christe RD, 2016, INFECT GENET EVOL, V45, P434, DOI 10.1016/j.meegid.2016.10.007
  12. Consoli R.A.G.B., 1994, Fiocruz Datamarkin
  13. Dujardin JP, 2011, GENETICS AND EVOLUTION OF INFECTIOUS DISEASES, P473, DOI 10.1016/B978-0-12-384890-1.00016-9
  14. Dujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011
  15. Fanioudakis E, 2018, EUR SIGNAL PR CONF, P2410, DOI 10.23919/EUSIPCO.2018.8553542
  16. Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294
  17. Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  18. Hajibabaei M, 2006, MOL ECOL NOTES, V6, P959, DOI 10.1111/j.1471-8286.2006.01470.x
  19. Harbach R.E., 2023, Mosquito Taxonomic Inventory
  20. Harbach RE, 2007, ZOOTAXA, P591
  21. Hebert PDN, 2003, P ROY SOC B-BIOL SCI, V270, P313, DOI 10.1098/rspb.2002.2218
  22. Houle D, 2003, BMC EVOL BIOL, V3, DOI 10.1186/1471-2148-3-25
  23. Huang LP, 2018, CONF TECHNOL APPL, P24, DOI 10.1109/TAAI.2018.00015
  24. Kittichai V, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-84219-4
  25. Klingenberg CP, 2013, SYST BIOL, V62, P591, DOI 10.1093/sysbio/syt025
  26. Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x
  27. Krieger H., 2002, Area de Ciencias Biologicas. Parcerias Estrategicas. Ministerio da Ciencia e Tecnologia, V4
  28. Krizhevsky Alex, 2017, Communications of the ACM, V60, P84, DOI 10.1145/3065386
  29. LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539
  30. Li K, 2017, INT CONF ACOUST SPEE, P2726, DOI 10.1109/ICASSP.2017.7952652
  31. Lorenz C, 2020, INFECT GENET EVOL, V77, DOI 10.1016/j.meegid.2019.104052
  32. Lorenz C, 2017, INFECT GENET EVOL, V54, P205, DOI 10.1016/j.meegid.2017.06.029
  33. Lorenz C, 2015, ACTA TROP, V152, P165, DOI 10.1016/j.actatropica.2015.09.011
  34. Lorenz C, 2013, AM J TROP MED HYG, V89, P928, DOI 10.4269/ajtmh.13-0359
  35. Lorenz C, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-257
  36. Mitteroecker P, 2009, EVOL BIOL, V36, P235, DOI 10.1007/s11692-009-9055-x
  37. Moraes D.A., 2003, Bioletim, V3, P1
  38. Mpho M, 2002, HEREDITY, V88, P307, DOI 10.1038/sj.hdy.6800045
  39. Mpho M, 2001, CHEMOSPHERE, V45, P713, DOI 10.1016/S0045-6535(01)00140-0
  40. Multini LC, 2019, ACTA TROP, V190, P30, DOI 10.1016/j.actatropica.2018.10.009
  41. Okayasu K, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9183935
  42. Orlandin E, 2017, BRAZ J BIOL, V77, P60, DOI 10.1590/1519-6984.09815
  43. Park J, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-57875-1
  44. Pataki BA, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-83657-4
  45. Raia-Barjat T, 2011, GYNECOL OBSTET FERTI, V39, P614, DOI 10.1016/j.gyobfe.2011.07.028
  46. Renaud AK, 2012, BMC ECOL, V12, DOI 10.1186/1472-6785-12-24
  47. Rohlf F.J., 2006, tpsDig, Digitize Landmarks and Outlines, Version 2.05
  48. Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
  49. Siddiqua R., 2021, AETiC, V5, P11, DOI [10.33166/AETiC.2021.03.002, DOI 10.33166/AETIC.2021.03.002, 10.33166/AETIC.2021.03.002]
  50. Simoes RF, 2020, INSECTS, V11, DOI 10.3390/insects11090567
  51. Tahir HM, 2016, MITOCHONDRIAL DNA A, V27, P4463, DOI 10.3109/194017362015.1089572
  52. Turing AM. I., 1950, MIND, VLIX, P433, DOI [DOI 10.1007/978-1-4020-6710-5_3, 10.1093/mind/LIX.236.433]
  53. Vidal PO, 2012, INFECT GENET EVOL, V12, P591, DOI 10.1016/j.meegid.2011.11.013
  54. Virginio F, 2021, FRONT ECOL EVOL, V9, DOI 10.3389/fevo.2021.660941
  55. Virginio F, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0769-6
  56. Yang Y, 2023, BIOLOGY-BASEL, V12, DOI 10.3390/biology12071006