Bacterial diversity in Haemagogus leucocelaenus (Diptera: Culicidae) from Vale do Ribeira, Sao Paulo, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
SILVA, Herculano da
OLIVEIRA, Tatiane M. P.
ALONSO, Diego Peres
SALLUM, Maria Anice M.
Citação
BMC MICROBIOLOGY, v.22, n.1, article ID 161, 10p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction Mosquitoes (Diptera: Culicidae) are vectors that transmit numerous pathogens to humans and other vertebrates. Haemagogus leucocelaenus is a mosquito associated with transmission of yellow fever virus. The insect gut harbors a variety of microorganisms that can live and multiply within it, thus contributing to digestion, nutrition, and development of its host. The composition of bacterial communities in mosquitoes can be influenced by both biotic and abiotic factors. The goal of this study was to investigate the bacterial diversity of Hg. leucocelaenus and verify the differences between the bacterial communities in Hg. leucocelaenus from three different locations in the Atlantic tropical rain forest and southeastern state of Sao Paulo State, Brazil. Results The phylum Proteobacteria was found in mosquitoes collected from the three selected study sites. More than 50% of the contigs belong to Wolbachia, followed by 5% Swaminathania, and 3% Acinetobacter. The genus Serratia was found in samples from two locations. Conclusions Wolbachia was reported for the first time in this species and may indicates that the vector competence of the populations of the species can vary along its geographical distribution area. The presence of Serratia might facilitate viral invasion caused by the disruption of the midgut barrier via action of the SmEnhancin protein, which digests the mucins present in the intestinal epithelium.
Palavras-chave
Mosquito vector, Yellow Fever, Microbiota, Atlantic Forest
Referências
  1. Akorli J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0157529
  2. Ali R, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-95842-6
  3. ARNELL J H, 1973, Contributions of the American Entomological Institute, V10, P1
  4. Attardo GM, 2005, INSECT BIOCHEM MOLEC, V35, P661, DOI 10.1016/j.ibmb.2005.02.013
  5. Bai L, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.01580
  6. Bascunan P, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0528-y
  7. Berhanu A, 2019, BMC MICROBIOL, V19, DOI 10.1186/s12866-019-1456-0
  8. Boissiere Anne, 2012, PLoS Pathog, V8, pe1002742, DOI 10.1371/journal.ppat.1002742
  9. Bolyen E, 2019, NAT BIOTECHNOL, V37, P852, DOI 10.1038/s41587-019-0209-9
  10. Callahan BJ, 2017, ISME J, V11, P2639, DOI 10.1038/ismej.2017.119
  11. Cansado-Utrilla C, 2021, MICROBIOME, V9, DOI 10.1186/s40168-021-01073-2
  12. Cardoso JD, 2010, EMERG INFECT DIS, V16, P1918, DOI 10.3201/eid1612.100608
  13. Dutra HLC, 2016, CELL HOST MICROBE, V19, P771, DOI 10.1016/j.chom.2016.04.021
  14. CHADEE DD, 1995, MED VET ENTOMOL, V9, P372, DOI 10.1111/j.1365-2915.1995.tb00006.x
  15. Chavshin AR, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0635-6
  16. Consoli R.A.G.B., 1994, PRINCIPAIS MOSQUITOS, V1st, DOI 10.7476/9788575412909
  17. Coon KL, 2014, MOL ECOL, V23, P2727, DOI 10.1111/mec.12771
  18. Vasconcelos PFD, 2010, REV SAUDE PUBL, V44, P1144, DOI 10.1590/S0034-89102010005000046
  19. Douglas AE, 2011, CELL HOST MICROBE, V10, P359, DOI 10.1016/j.chom.2011.09.001
  20. Forattini O.P., 2002, CULICIDOLOGIA MED ID
  21. Forattini OP, 1998, ECOSYST HEALTH, V4, P9, DOI 10.1046/j.1526-0992.1998.00067.x
  22. FORATTINI OP, 1988, REV SAUDE PUBL, V22, P84, DOI 10.1590/S0034-89101988000200003
  23. Gaio AD, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-105
  24. Gendrin M, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms6921
  25. Gimonneau G, 2014, INFECT GENET EVOL, V28, P715, DOI 10.1016/j.meegid.2014.09.029
  26. Hughes GL, 2011, PLOS PATHOG, V7, DOI 10.1371/journal.ppat.1002043
  27. Iversson L B, 1981, Rev Saude Publica, V15, P587, DOI 10.1590/S0034-89101981000600002
  28. IVERSSON LB, 1989, REV I MED TROP, V31, P28, DOI 10.1590/S0036-46651989000100006
  29. Jourand P, 2004, INT J SYST EVOL MICR, DOI [10.1099/ijs.0.02902, DOI 10.1099/IJS.0.02902]
  30. Kesnerova L, 2020, ISME J, V14, P801, DOI 10.1038/s41396-019-0568-8
  31. Kramer LD, 2015, CURR OPIN VIROL, V15, P112, DOI 10.1016/j.coviro.2015.10.003
  32. Laporta GZ, 2012, CAD SAUDE PUBLICA, V28, P229, DOI 10.1590/S0102-311X2012000200003
  33. Lee JM, 2020, ACTA TROP, V212, DOI 10.1016/j.actatropica.2020.105683
  34. Lindh JM, 2008, ACTA TROP, V107, P242, DOI 10.1016/j.actatropica.2008.06.008
  35. LOPES OD, 1981, AM J EPIDEMIOL, V113, P122
  36. Magoc T, 2011, BIOINFORMATICS, V27, P2957, DOI 10.1093/bioinformatics/btr507
  37. Minard G, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-146
  38. Mucci LF, 2016, J AM MOSQUITO CONTR, V32, P329, DOI 10.2987/16-6587.1
  39. Muturi EJ, 2019, FEMS MICROBIOL ECOL, V95, DOI 10.1093/femsec/fiy213
  40. Muturi EJ, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-3036-9
  41. Muturi EJ, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005377
  42. Mwadondo E. M., 2017, African Journal of Microbiology Research, V11, P1171
  43. Ogunlade ST, 2021, VACCINES-BASEL, V9, DOI 10.3390/vaccines9010032
  44. Silva NIO, 2020, VIROL J, V17, DOI 10.1186/s12985-019-1277-7
  45. Ribeiro MC, 2009, BIOL CONSERV, V142, P1141, DOI 10.1016/j.biocon.2009.02.021
  46. Rocha Lidianne L, 2016, Int J Microbiol, V2016, P3435809, DOI 10.1155/2016/3435809
  47. Rodgers FH, 2017, PLOS PATHOG, V13, DOI 10.1371/journal.ppat.1006391
  48. Romano-Lieber NS, 2000, REV SAUDE PUBL, V34, P236, DOI 10.1590/S0034-89102000000300005
  49. Rossi P, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-0888-0
  50. Saab SA, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-60075-6
  51. Samaddar N, 2011, CURR MICROBIOL, V63, P226, DOI 10.1007/s00284-011-9968-3
  52. de Abreu FVS, 2019, EMERG MICROBES INFEC, V8, P218, DOI 10.1080/22221751.2019.1568180
  53. Strickman, 2021, MOSQUITOES WORLD, V1
  54. Tchouassi DP, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007361
  55. van den Hurk AF, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001892
  56. Villegas LEM, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0190352
  57. Wang Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024767
  58. Wilk-da-Silva R, 2022, ACTA TROP, V228, DOI 10.1016/j.actatropica.2022.106333
  59. Wilk-da-Silva R, 2020, ACTA TROP, V204, DOI 10.1016/j.actatropica.2020.105385
  60. Wu P, 2019, CELL HOST MICROBE, V25, P101, DOI 10.1016/j.chom.2018.11.004
  61. Yadav KK, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1252-0
  62. Zavortink TJ, 1972, CONTRIB AM ENT I, V8, P1
  63. Zouache K, 2012, MOL ECOL, V21, P2297, DOI 10.1111/j.1365-294X.2012.05526.x