Commuter's personal exposure to air pollutants after the implementation of a cable car for public transport: Results of the natural experiment TrUST

Imagem de Miniatura
Citações na Scopus
Tipo de produção
Data de publicação
Título da Revista
ISSN da Revista
Título do Volume
MOLANO, Daniela Mendez
ANGULO, Daniela
GARZON, Gabriela
SCIENCE OF THE TOTAL ENVIRONMENT, v.865, article ID 160880, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Commuters in urban settlements are frequently exposed to high concentrations of air pollutants due to their proximity to mobile sources, making exposure to traffic-related air pollutants an important public health issue. Recent trends in urban transport towards zero-and low-tailpipe emission alternatives will likely result in decreased exposure to air pol-lutants. The TrUST (Urban transformations and health) study offers a unique opportunity to understand the impacts of a new cable car (TransMiCable) in underserved communities within Bogota, Colombia. The aims of this study are to assess the personal exposure to fine particulate matter (PM2.5), equivalent Black Carbon (eBC), and Carbon Monoxide (CO) in transport micro-environments and to estimate the inhaled dose per trip during mandatory multimodal trips before and after the implementation of the TransMiCable. We collected personal exposure data for Bus-Rapid-Transit (BRT) feeder buses, regular buses, informal transport, pedestrians, and TransMiCable. TransMiCable showed lower ex-posure concentration compared to BRT feeder and regular buses (PM2.5: 23.6 vs. 87.0 mu g m-3 (P <= 0.001) and eBC: 5.2 vs. 28.2 mu g m-3 (P <= 0.001), respectively). The mean concentration of PM2.5 and eBC inside the TransMiCable cabins were 62 % and 82 % lower than the mean concentrations in buses. Furthermore, using a Monte Carlo simulation model, we found that including the TransMiCable as a feeder is related to a 54.4 mu g/trip reduction in PM2.5 inhaled dose and 35.8 mu g/trip in eBC per trip. Those changes represent a 27 % and 34 % reduction in an inhaled dose per trip, respectively. Our results show that PM2.5, eBC, and CO inhaled dose for TransMiCable users is reduced due to lower exposure concentration inside its cabins and shorter travel time. The implementation of a cable car in Bogota is likely to reduce air pollution exposure in transport micro-environments used by vulnerable populations living in semi -informal settlements.
Personal exposure, Air pollution, Transport, Black carbon, Clean transport
  1. Andersen MHG, 2019, ENVIRON SCI TECHNOL, V53, P4579, DOI 10.1021/acs.est.8b06980
  2. Canon Rubiano L., 2020, URBAN AERIAL CABLE C
  3. Carlet F., 2016, SBE2016 POSTCARBON C
  4. Cepeda M, 2017, LANCET PUBLIC HEALTH, V2, pE23, DOI 10.1016/S2468-2667(16)30021-4
  5. Chen H., 2013, EPIDEMIOLOGY, DOI [10.1097/EDE.0b013-318276c005, DOI 10.1097/EDE.0B013-318276C005]
  6. Chen RJ, 2012, ENVIRON INT, V45, P32, DOI 10.1016/j.envint.2012.04.008
  7. de Nazelle A, 2012, ATMOS ENVIRON, V59, P151, DOI 10.1016/j.atmosenv.2012.05.013
  8. Dennekamp M., 2002, ANN OCCUP HYG, V46, P412, DOI [10.1093/ANNHYG/46.SUPPL_1.412, DOI 10.1093/ANNHYG/46.SUPPL_1.412, DOI 10.1093/ANNHYG/MEF702]
  9. Dons E, 2012, ATMOS ENVIRON, V55, P392, DOI 10.1016/j.atmosenv.2012.03.020
  10. Freedson PS, 1998, MED SCI SPORT EXER, V30, P777, DOI 10.1097/00005768-199805000-00021
  11. Gan WQ, 2011, ENVIRON HEALTH PERSP, V119, P501, DOI 10.1289/ehp.1002511
  12. Global Road Safety Facility Institute for Health Metrics and Evaluation The World Bank Institute for Health Metrics and Evaluation, 2014, TRANSPORT HEALTHTHE, DOI [10.1016/B978-012373960-5.00335-X, DOI 10.1016/B978-012373960-5.00335-X]
  13. Gouveia N, 2021, SCI TOTAL ENVIRON, V772, DOI 10.1016/j.scitotenv.2021.145035
  14. Grahame TJ, 2010, AIR QUAL ATMOS HLTH, V3, P3, DOI 10.1007/s11869-009-0047-x
  15. Gulliver J, 2004, ATMOS ENVIRON, V38, P1, DOI 10.1016/j.atmosenv.2003.09.036
  16. Guzman LA, 2022, TRANSPORTATION, DOI 10.1007/s11116-021-10260-x
  17. Guzman LA, 2020, TRANSPORT RES A-POL, V134, P321, DOI 10.1016/j.tra.2020.02.019
  18. Guzman LA, 2017, CITIES, V60, P202, DOI 10.1016/j.cities.2016.09.004
  19. Health Effects Institute, 2010, TRAFF REL AIR POLL C
  20. Heinrichs D, 2017, TRANSP RES PROC, V25, DOI 10.1016/j.trpro.2017.05.346
  21. Johansson C, 2009, ATMOS ENVIRON, V43, P4843, DOI 10.1016/j.atmosenv.2008.09.015
  22. Kaur S, 2007, ATMOS ENVIRON, V41, P4781, DOI 10.1016/j.atmosenv.2007.02.002
  23. Kawahara J, 2011, SCI TOTAL ENVIRON, V409, P3073, DOI 10.1016/j.scitotenv.2011.04.006
  24. Levy JI, 2002, J EXPO ANAL ENV EPID, V12, P104, DOI 10.1038/sj.jea.7500203
  25. Liu WT, 2015, INT J HYG ENVIR HEAL, V218, P319, DOI 10.1016/j.ijheh.2015.01.003
  26. Madueno L, 2019, ENVIRON POLLUT, V248, P295, DOI 10.1016/j.envpol.2019.02.021
  27. Matz CJ, 2018, AIR QUAL ATMOS HLTH, V11, P209, DOI 10.1007/s11869-017-0532-6
  28. Maynard D, 2007, ENVIRON HEALTH PERSP, V115, P751, DOI 10.1289/ehp.9537
  29. Betancourt RM, 2019, ATMOS ENVIRON, V202, P117, DOI 10.1016/j.atmosenv.2019.01.026
  30. Betancourt RM, 2017, ATMOS ENVIRON, V157, P135, DOI 10.1016/j.atmosenv.2017.03.006
  31. Morales Betancourt R., 2022, ENVIRON SCI TECHNOL, DOI [10.1021/ACS.EST.1C07004acs.est.1c07004, DOI 10.1021/ACS.EST.1C07004ACS.EST.1C07004]
  32. ONU, 2017, HAB 3 C NAC UN VIV D
  33. Peretz A, 2008, ENVIRON HEALTH PERSP, V116, P937, DOI 10.1289/ehp.11027
  34. R Core Team (2015), 2015, R LANG ENV STAT COMP
  35. Rodriguez-Valencia A, 2019, TRANSPORT RES REC, V2673, P710, DOI 10.1177/0361198118825125
  36. Sarmiento O.L., 2017, SUSTAINABLE TRANSPOR, P1
  37. Sarmiento OL, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.00064
  38. Secretaria Distrital de Movilidad, 2019, ENC MOV 2019
  39. Targino AC, 2020, ENVIRON POLLUT, V263, DOI 10.1016/j.envpol.2020.114601
  40. Tonne C, 2008, OCCUP ENVIRON MED, V65, P620, DOI 10.1136/oem.2007.036533
  41. Van Ryswyk K, 2021, J EXPO SCI ENV EPID, V31, P628, DOI 10.1038/s41370-020-0242-2
  42. Virkkula A, 2007, J AIR WASTE MANAGE, V57, P1214, DOI 10.3155/1047-3289.57.10.1214