Gut Dysbiosis in Chagas Disease. A Possible Link to the Pathogenesis

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
Citação
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, v.10, article ID 402, 8p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Chagas disease is caused by the flagellate protozoanTrypanosoma cruzi. Cardiomyopathy and damage to gastrointestinal tissue are the main disease manifestations. There are data suggesting that the immune response toT. cruzidepends on the intestinal microbiota. We hypothesized that Chagas disease is associated with an altered gut microbiome and that these changes are related to the disease phenotype. The stool microbiome from 104 individuals, 73 with Chagas disease (30 with the cardiac, 11 with the digestive, and 32 with the indeterminate form), and 31 healthy controls was characterized using 16S rRNA amplification and sequencing. The QIIME (Quantitative Insights Into Microbial Ecology) platform was used to analyze the data. Alpha and beta diversity indexes did not indicate differences between the groups. However, the relative abundance ofVerrucomicrobia, represented primarily by the genusAkkermansia, was significantly lower in the Chagas disease groups, especially the cardiac group, compared to the controls. Furthermore, differences in the relative abundances ofAlistipes, Bilophila, andDialisterwere observed between the groups. We conclude thatT. cruziinfection results in changes in the gut microbiome that may play a role in the myocardial and intestinal inflammation seen in Chagas disease.
Palavras-chave
Chagas disease, microbiome, 16S rRNA sequencing, gut, dysbiosis
Referências
  1. Alves RL, 2019, LIFE SCI, V232, DOI 10.1016/j.lfs.2019.116629
  2. [Anonymous], 2015, Wkly Epidemiol Rec, V90, P33
  3. Bolyen E, 2019, NAT BIOTECHNOL, V37, P852, DOI 10.1038/s41587-019-0209-9
  4. Caporaso JG, 2011, P NATL ACAD SCI USA, V108, P4516, DOI 10.1073/pnas.1000080107
  5. Carvalho TB, 2019, PARASITOL RES, V118, P2343, DOI 10.1007/s00436-019-06377-9
  6. Ciubotaru I, 2015, TRANSL RES, V166, P401, DOI 10.1016/j.trsl.2015.06.015
  7. Costea PI, 2017, NAT BIOTECHNOL, V35, P1069, DOI 10.1038/nbt.3960
  8. Cunha-Neto E, 2014, MEDIAT INFLAMM, V2014, DOI 10.1155/2014/683230
  9. David LA, 2014, NATURE, V505, P559, DOI 10.1038/nature12820
  10. de Oliveira LR, 2019, REV SOC BRAS MED TRO, V52, DOI 10.1590/0037-8682-0133-2019
  11. DeSantis TZ, 2006, APPL ENVIRON MICROB, V72, P5069, DOI 10.1128/AEM.03006-05
  12. Di Cesare M, 2016, LANCET, V387, P1377, DOI 10.1016/S0140-6736(16)30054-X
  13. Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461
  14. Engels D, 2006, TRENDS PARASITOL, V22, P363, DOI 10.1016/j.pt.2006.06.004
  15. Everard A, 2013, P NATL ACAD SCI USA, V110, P9066, DOI 10.1073/pnas.1219451110
  16. Fenner L, 2007, EMERG INFECT DIS, V13, P1260, DOI 10.3201/eid1308.060662
  17. Francisco AF, 2015, ANTIMICROB AGENTS CH, V59, P4653, DOI 10.1128/AAC.00520-15
  18. Geraix J, 2007, BRAZ J INFECT DIS, V11, P411, DOI 10.1590/S1413-86702007000400008
  19. Girones N, 2007, ANN NY ACAD SCI, V1107, P434, DOI 10.1196/annals.1381.046
  20. Gomez-Olarte S, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01671
  21. Keating SM, 2015, INT J CARDIOL, V199, P451, DOI 10.1016/j.ijcard.2015.07.040
  22. Lewis MD, 2016, CELL MICROBIOL, V18, P1429, DOI 10.1111/cmi.12584
  23. Lewis MD, 2014, CELL MICROBIOL, V16, P1285, DOI 10.1111/cmi.12297
  24. Li ZC, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.00709
  25. Lopetuso LR, 2017, DIGEST DIS, V36, P56, DOI 10.1159/000477205
  26. Lozupone C, 2011, ISME J, V5, P169, DOI 10.1038/ismej.2010.133
  27. Mandal Siddhartha, 2015, Microbial Ecology in Health and Disease, V26, P27663, DOI 10.3402/mehd.v26.27663
  28. Marin JA, 2007, CIRCULATION, V115, P1109, DOI 10.1161/CIRCULATIONAHA.106.624296
  29. McCall LI, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006344
  30. McInnes P, 2010, MANUAL PROCEDURES HU
  31. Medeiros NI, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-50791-z
  32. Nagajyothi F, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0003118
  33. PAHO, 2016, GEN INF CHAG DIS PAH
  34. Panek M, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23296-4
  35. Qin JJ, 2012, NATURE, V490, P55, DOI 10.1038/nature11450
  36. Rassi A, 2010, LANCET, V375, P1388, DOI 10.1016/S0140-6736(10)60061-X
  37. Reis PG, 2017, J IMMUNOL RES, V2017, DOI 10.1155/2017/1017621
  38. Robello C, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0212593
  39. Routy B, 2018, SCIENCE, V359, P91, DOI 10.1126/science.aan3706
  40. Sabino EC, 2013, TRANSFUSION, V53, P1257, DOI 10.1111/j.1537-2995.2012.03902.x
  41. Sanchez-Alcoholado L, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01936
  42. Saulnier DM, 2011, GASTROENTEROLOGY, V141, P1782, DOI 10.1053/j.gastro.2011.06.072
  43. Schofield CJ, 2006, TRENDS PARASITOL, V22, P583, DOI 10.1016/j.pt.2006.09.011
  44. Teixeira ARL, 2006, MEM I OSWALDO CRUZ, V101, P463, DOI 10.1590/S0074-02762006000500001
  45. Tito RY, 2019, GUT, V68, P1180, DOI 10.1136/gutjnl-2018-316106
  46. Villarino NF, 2016, P NATL ACAD SCI USA, V113, P2235, DOI 10.1073/pnas.1504887113
  47. Wan Y, 2019, GUT, V68, P1417, DOI 10.1136/gutjnl-2018-317609
  48. Zhang JJ, 2014, BIOINFORMATICS, V30, P614, DOI 10.1093/bioinformatics/btt593