Diffuse alveolar damage patterns reflect the immunological and molecular heterogeneity in fatal COVID-19

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
ERJEFALT, Jonas S.
JONSSON, Jimmie
COZZOLINO, Olga
CLAUSSON, Carl-Magnus
SIDDHURAJ, Premkumar
LINDO, Caroline
ALYAMANI, Manar
Citação
EBIOMEDICINE, v.83, article ID 104229, 16p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19. Methods We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed. Findings Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with dis-ease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production. Interpretation Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments.
Palavras-chave
COVID-19, SARS-Cov-2, Immunopathology, Diffuse alveolar damage, Autopsy
Referências
  1. Caramaschi S, 2021, MODERN PATHOL, V34, P1614, DOI 10.1038/s41379-021-00814-w
  2. Cardozo CM, 2021, CURR OPIN ONCOL, V33, P149, DOI 10.1097/CCO.0000000000000713
  3. Chua RL, 2020, NAT BIOTECHNOL, V38, P970, DOI 10.1038/s41587-020-0602-4
  4. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045
  5. Corredor G, 2021, J MED IMAGING, V8, DOI 10.1117/1.JMI.8.S1.017501
  6. Dorward DA, 2021, AM J RESP CRIT CARE, V203, P192, DOI 10.1164/rccm.202008-3265OC
  7. Duarte-Neto AN, 2020, HISTOPATHOLOGY, V77, P186, DOI 10.1111/his.14160
  8. Fan J, 2020, J INFECTION, V81, pE64, DOI 10.1016/j.jinf.2020.06.047
  9. Fujita SI, 2001, J CLIN MICROBIOL, V39, P3617, DOI 10.1128/JCM.39.10.3617-3622.2001
  10. Gaibani P, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-89516-6
  11. Garcia-Sastre A, 2006, J INFECT DIS, V194, pS127, DOI 10.1086/507546
  12. Gelarden I, 2021, HUM PATHOL, V113, P92, DOI 10.1016/j.humpath.2021.04.010
  13. Goligher EC, 2021, NEW ENGL J MED, V385, P777, DOI 10.1056/NEJMoa2103417
  14. Goplen NP, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.636118
  15. Heard KL, 2020, LANCET MICROBE, V1, pE107, DOI 10.1016/S2666-5247(20)30065-3
  16. Izda V, 2021, CLIN IMMUNOL, V222, DOI 10.1016/j.clim.2020.108634
  17. Lawler PR, 2021, NEW ENGL J MED, V385, P790, DOI 10.1056/NEJMoa2105911
  18. Lee JW, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10040897
  19. Liao MF, 2020, NAT MED, V26, P842, DOI 10.1038/s41591-020-0901-9
  20. Mauad T, 2021, RESP RES, V22, DOI 10.1186/s12931-021-01628-9
  21. Milross Luke, 2022, Lancet Respir Med, V10, P95, DOI 10.1016/S2213-2600(21)00408-2
  22. Miron M, 2021, GENOME MED, V13, DOI 10.1186/s13073-021-00918-7
  23. Motta AL, 2010, BRAZ J INFECT DIS, V14, P441, DOI 10.1590/S1413-86702010000500004
  24. Nienhold R, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-18854-2
  25. Park J, 2022, CELL REP MED, V3, DOI 10.1016/j.xcrm.2022.100522
  26. Rodrigues W, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.856137
  27. Sencio V, 2021, MUCOSAL IMMUNOL, V14, P296, DOI 10.1038/s41385-020-00361-8
  28. Stoltzfus CR, 2020, CELL REP, V31, DOI 10.1016/j.celrep.2020.107523
  29. Strickland DH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111520
  30. Thurley K, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004206
  31. Unkel B, 2012, J CLIN INVEST, V122, P3652, DOI 10.1172/JCI62139
  32. Veras FP, 2020, J EXP MED, V217, DOI 10.1084/jem.20201129
  33. Wendisch D, 2021, CELL, V184, P6243, DOI 10.1016/j.cell.2021.11.033
  34. WHO. World Health Organization, 2021, COVID 19 CLIN MAN LI