Classification of Autism Spectrum Disorder Severity Using Eye Tracking Data Based on Visual Attention Model

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
conferenceObject
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
IEEE
Autores
OLIVEIRA, Jessica S.
FRANCO, Felipe O.
V, Thiago Cardoso
MACHADO-LIMA, Ariane
NUNES, Fatima L. S.
Citação
2021 IEEE 34TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), p.142-147, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Computer-aided diagnosis using eye tracking data is classically based on regions of interest in the image. However, in recent years, the modeling of visual attention by saliency maps has shown better results. Wang et al., considering 3-layered saliency model that incorporated pixel-level, objectlevel, and semantic-level attributes, showed differences in the performance of eye tracking in autism spectrum disorder (ASD) and better characterized these differences by looking at which attributes were used, providing meaningful clinical results about the disorder. Our hypothesis is that the context interpretation would be worse according to the severity of ASD, consequently, the eye tracking data processed based on visual attention model (VAM) could be used to classify patients with ASD according to gravity. In this context, the present work proposes: 1) based on VAM, using Image Processing and Artificial Intelligence to learn a model for each group (severe and non-severe), from eye tracking data, and 2) a supervised classifier that, based on the models learned, performs the severity diagnosis. The classifier using the saliency maps was able to identify and separate the groups with an average accuracy of 88%. The most important features were the presence of face and skin color, in other words, semantic features.
Palavras-chave
Autism Spectrum Disorder, Severity Level, Supervised Machine Learning, Classifier, Eye Tracking
Referências
  1. American Psychiatric Association, 2013, DSM 5 DIAGNOSTIC STA, DOI 10.1176/APPI.BOOKS.9780890425596
  2. Bacon EC, 2020, AUTISM, V24, P658, DOI 10.1177/1362361319878578
  3. Bataineh E, 2014, 16TH INTERNATIONAL CONFERENCE ON ADVANCES IN MOBILE COMPUTING AND MULTIMEDIA (MOMM 2018), P61, DOI 10.1145/3282353.3282856
  4. Benini S, 2019, SIGNAL PROCESS-IMAGE, V74, P21, DOI 10.1016/j.image.2019.01.005
  5. Chauhan V, 2015, OXID STRESS APPL BAS, P89, DOI 10.1007/978-1-4939-0440-2_4
  6. Chawarska K, 2013, BIOL PSYCHIAT, V74, P195, DOI 10.1016/j.biopsych.2012.11.022
  7. Coffman MC, 2015, J AUTISM DEV DISORD, V45, P589, DOI 10.1007/s10803-013-2006-5
  8. Craig F, 2020, AUTISM RES, V13, P1537, DOI 10.1002/aur.2305
  9. Duan H, 2019, ACM T MULTIM COMPUT, V15, DOI 10.1145/3337066
  10. Fang YM, 2019, IEEE INT CONF MULTI, P625, DOI 10.1109/ICMEW.2019.00120
  11. Fletcher-Watson S, 2009, NEUROPSYCHOLOGIA, V47, P248, DOI 10.1016/j.neuropsychologia.2008.07.016
  12. imnepal.com, 2020, CAN PEOPL HELP STOP
  13. Itti L, 2001, NAT REV NEUROSCI, V2, P194, DOI 10.1038/35058500
  14. Itti L, 2015, NEURON, V88, P442, DOI 10.1016/j.neuron.2015.10.033
  15. Jones W, 2013, NATURE, V504, P427, DOI 10.1038/nature12715
  16. Judd T, 2009, IEEE I CONF COMP VIS, P2106, DOI 10.1109/ICCV.2009.5459462
  17. Kononenko I, 1997, APPL INTELL, V7, P39, DOI 10.1023/A:1008280620621
  18. Kou J, 2019, AUTISM RES, V12, P1529, DOI 10.1002/aur.2174
  19. Lai MC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047198
  20. Lam KSL, 2007, J AUTISM DEV DISORD, V37, P855, DOI 10.1007/s10803-006-0213-z
  21. Le Meur O, 2020, IEEE ACCESS, V8, P162132, DOI 10.1109/ACCESS.2020.3020251
  22. Liu GH, 2015, PATTERN RECOGN, V48, P2554, DOI 10.1016/j.patcog.2015.02.005
  23. LORD C, 1985, J AUTISM DEV DISORD, V15, P185, DOI 10.1007/BF01531604
  24. Lord C, 2015, ANNU REV CLIN PSYCHO, V11, P53, DOI 10.1146/annurev-clinpsy-032814-112745
  25. MATLAB, 2019, MATLAB R2019B
  26. Mussey JL, 2017, AUTISM, V21, P733, DOI 10.1177/1362361316682621
  27. Pepperdine CR, 2018, CAN J SCH PSYCHOL, V33, P157, DOI 10.1177/0829573517733845
  28. Pereira A, 2008, J PEDIAT-BRAZIL, V84, P487, DOI [10.2223/JPED.1828, 10.1590/S0021-75572008000700004]
  29. Pierce K, 2016, BIOL PSYCHIAT, V79, P657, DOI 10.1016/j.biopsych.2015.03.032
  30. Pua EPK, 2021, CEREB CORTEX, V31, P681, DOI 10.1093/cercor/bhaa252
  31. Ratto AB, 2018, J AUTISM DEV DISORD, V48, P1698, DOI 10.1007/s10803-017-3413-9
  32. RStudio Team, 2020, RSTUDIO INT DEV R
  33. Sasson NJ, 2014, J AUTISM DEV DISORD, V44, P584, DOI 10.1007/s10803-013-1910-z
  34. Schauder KB, 2019, J NEURODEV DISORD, V11, DOI 10.1186/s11689-019-9303-z
  35. SCHOPLER E, 1980, J AUTISM DEV DISORD, V10, P91, DOI 10.1007/BF02408436
  36. Simoncelli EP, 1995, INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOLS I-III, pC444
  37. Tanaka JW, 2016, J AUTISM DEV DISORD, V46, P1538, DOI 10.1007/s10803-013-1976-7
  38. Tobii AB., 2016, TOBII STUDIO USERS M
  39. TREISMAN AM, 1980, COGNITIVE PSYCHOL, V12, P97, DOI 10.1016/0010-0285(80)90005-5
  40. Walther D, 2006, THESIS CALTECH
  41. Wang S, 2015, NEURON, V88, P604, DOI 10.1016/j.neuron.2015.09.042
  42. Yamaguchi Kota, 2020, KYAMAGU MEXOPENCV
  43. Yaneva V, 2020, IEEE T NEUR SYS REH, V28, P1254, DOI 10.1109/TNSRE.2020.2991675
  44. Yirmiya N, 2006, J CHILD PSYCHOL PSYC, V47, P511, DOI 10.1111/j.1469-7610.2005.01528.x
  45. YOUDEN WJ, 1950, BIOMETRICS, V6, P172, DOI 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3