Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorBESSA, Danielle S.
dc.contributor.authorMASCHIETTO, Mariana
dc.contributor.authorAYLWIN, Carlos Francisco
dc.contributor.authorCANTON, Ana P. M.
dc.contributor.authorBRITO, Vinicius N.
dc.contributor.authorMACEDO, Delanie B.
dc.contributor.authorCUNHA-SILVA, Marina
dc.contributor.authorPALHARES, Heloisa M. C.
dc.contributor.authorRESENDE, Elisabete A. M. R. de
dc.contributor.authorBORGES, Maria de Fatima
dc.contributor.authorMENDONCA, Berenice B.
dc.contributor.authorNETCHINE, Irene
dc.contributor.authorKREPISCHI, Ana C. V.
dc.contributor.authorLOMNICZI, Alejandro
dc.contributor.authorOJEDA, Sergio R.
dc.contributor.authorLATRONICO, Ana Claudia
dc.identifier.citationCLINICAL EPIGENETICS, v.10, article ID 146, 18p, 2018
dc.description.abstractBackgroundRecent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal.ResultsAnalyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP.ConclusionMethylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty.eng
dc.description.sponsorshipCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo [2015/06281-7, 2013/03236-5]
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico [302849/2015-7]
dc.description.sponsorshipNational Institute of Health [1R01HD084542, 8P51OD011092]
dc.relation.ispartofClinical Epigenetics
dc.subjectHuman pubertyeng
dc.subjectCentral precocious pubertyeng
dc.subjectDNA methylationeng
dc.subjectGenomic imprintingeng
dc.subjectZinc finger geneseng
dc.subject.otherdna methylationeng
dc.subject.otherepigenetic regulationeng
dc.titleMethylome profiling of healthy and central precocious puberty girlseng
dc.rights.holderCopyright BMCeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng, Mariana:Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Biosci Natl Lab LNBio, Campinas, SP, Brazil, Carlos Francisco:OHSU, Oregon Natl Primate Res Ctr, Div Genet, Beaverton, OR USA, Heloisa M. C.:Triangulo Mineiro Fed Univ, Div Endocrinol, Uberaba, MG, Brazil, Elisabete A. M. R. de:Triangulo Mineiro Fed Univ, Div Endocrinol, Uberaba, MG, Brazil, Maria de Fatima:Triangulo Mineiro Fed Univ, Div Endocrinol, Uberaba, MG, Brazil, Irene:Sorbonne Univ, Hop Armand Trousseau, AP HP,Ctr Rech St Antoine,UMR S 938, INSERM,Explorat Fonct Endocriniennes, Paris, France, Ana C. V.:Univ Sao Paulo, Inst Biosci, Dept Genet & Evolutionary Biol, Sao Paulo, SP, Brazil, Alejandro:OHSU, Oregon Natl Primate Res Ctr, Div Genet, Beaverton, OR USA; OHSU, Div Neurosci, Oregon Natl Primate Res Ctr, Beaverton, OR USA, Sergio R.:OHSU, Div Neurosci, Oregon Natl Primate Res Ctr, Beaverton, OR USA
hcfmusp.relation.referenceAbreu AP, 2015, J MOL ENDOCRINOL, V54, pR131, DOI 10.1530/JME-14-0315eng
hcfmusp.relation.referenceAbreu AP, 2013, NEW ENGL J MED, V368, P2467, DOI 10.1056/NEJMoa1302160eng
hcfmusp.relation.referenceAlmstrup K, 2016, SCI REP-UK, V6, DOI 10.1038/srep28657eng
hcfmusp.relation.referenceAssenov Y, 2014, NAT METHODS, V11, P1138, DOI [10.1038/NMETH.3115, 10.1038/nmeth.3115]eng
hcfmusp.relation.referenceAzzi S, 2011, HUM MUTAT, V32, P249, DOI 10.1002/humu.21403eng
hcfmusp.relation.referenceBerdasco M, 2013, HUM GENET, V132, P359, DOI 10.1007/s00439-013-1271-xeng
hcfmusp.relation.referenceBrito VN, 1999, J CLIN ENDOCR METAB, V84, P3539, DOI 10.1210/jc.84.10.3539eng
hcfmusp.relation.referenceBrito VN, 2004, J CLIN ENDOCR METAB, V89, P4338, DOI 10.1210/jc.2003-031537eng
hcfmusp.relation.referenceChen S, 2017, GENET EPIGENETICS, V9, DOI 10.1177/1179237X17721540eng
hcfmusp.relation.referenceDauber A, 2017, J CLIN ENDOCR METAB, V102, P1557, DOI 10.1210/jc.2016-3677eng
hcfmusp.relation.referencede Vries L, 2004, J CLIN ENDOCR METAB, V89, P1794, DOI 10.1210/jc.2003-030361eng
hcfmusp.relation.referenceDeaton AM, 2011, GENE DEV, V25, P1010, DOI 10.1101/gad.2037511eng
hcfmusp.relation.referenceEggermann T, 2015, CLIN EPIGENETICS, V7, DOI 10.1186/s13148-015-0143-8eng
hcfmusp.relation.referenceFelsenfeld G, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a018200eng
hcfmusp.relation.referenceFISCHBEIN S, 1977, ANN HUM BIOL, V4, P417, DOI 10.1080/03014467700002401eng
hcfmusp.relation.referenceGeoffron S, 2018, J CLIN ENDOCR METAB, V103, P2436, DOI 10.1210/jc.2017-02152eng
hcfmusp.relation.referenceGiorda R, 2009, AM J HUM GENET, V85, P394, DOI 10.1016/j.ajhg.2009.08.001eng
hcfmusp.relation.referenceGrosso S, 2000, ENDOCR PATHOL, V11, P69, DOI 10.1385/EP:11:1:69eng
hcfmusp.relation.referenceHeger S, 2007, J CLIN INVEST, V117, P2145, DOI 10.1172/JC131752eng
hcfmusp.relation.referenceHou P, 2011, ENDOCR-RELAT CANCER, V18, P687, DOI 10.1530/ERC-11-0212eng
hcfmusp.relation.referenceHouseman EA, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-86eng
hcfmusp.relation.referenceJones PA, 2012, NAT REV GENET, V13, P484, DOI 10.1038/nrg3230eng
hcfmusp.relation.referenceKanherkar Riya R, 2014, Front Cell Dev Biol, V2, P49, DOI 10.3389/fcell.2014.00049eng
hcfmusp.relation.referenceKurian Joseph R, 2013, Front Endocrinol (Lausanne), V4, P61, DOI 10.3389/fendo.2013.00061eng
hcfmusp.relation.referenceLatronico AC, 2016, LANCET DIABETES ENDO, V4, P265, DOI 10.1016/S2213-8587(15)00380-0eng
hcfmusp.relation.referenceLeka-Emiri S, 2017, J ENDOCRINOL INVEST, V40, P789, DOI 10.1007/s40618-017-0627-9eng
hcfmusp.relation.referenceLi XJ, 2008, DEV CELL, V15, P547, DOI 10.1016/j.devcel.2008.08.014eng
hcfmusp.relation.referenceLigtenberg MJL, 2009, NAT GENET, V41, P112, DOI 10.1038/ng.283eng
hcfmusp.relation.referenceLomniczi A, 2016, ENDOCR DEV, V29, P1, DOI 10.1159/000438840eng
hcfmusp.relation.referenceLomniczi A, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10195eng
hcfmusp.relation.referenceLomniczi A, 2013, NAT NEUROSCI, V16, P281, DOI 10.1038/nn.3319eng
hcfmusp.relation.referenceLupo A, 2013, CURR GENOMICS, V14, P268, DOI 10.2174/13892029113149990002eng
hcfmusp.relation.referenceMacedo DB, 2014, ARQ BRAS ENDOCRINOL, V58, P108, DOI 10.1590/0004-2730000002931eng
hcfmusp.relation.referenceMacedo DB, 2014, NEUROENDOCRINOLOGY, V100, P1, DOI 10.1159/000366282eng
hcfmusp.relation.referenceMackay DJG, 2008, NAT GENET, V40, P949, DOI 10.1038/ng.187eng
hcfmusp.relation.referenceMaksimovic J, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-6-r44eng
hcfmusp.relation.referenceMangs AH, 2007, CURR GENOMICS, V8, P129, DOI 10.2174/138920207780368141eng
hcfmusp.relation.referenceMayer C, 2010, P NATL ACAD SCI USA, V107, P22693, DOI 10.1073/pnas.1012406108eng
hcfmusp.relation.referenceNavaratnam DS, 2000, J NEUROCHEM, V74, P2146, DOI 10.1046/j.1471-4159.2000.0742146.xeng
hcfmusp.relation.referenceOjeda SR, 2014, NAT REV ENDOCRINOL, V10, P67, DOI 10.1038/nrendo.2013.233eng
hcfmusp.relation.referencePalmert MR, 2003, MOL GENET METAB, V80, P1, DOI 10.1016/S1096-7192(03)00107-0eng
hcfmusp.relation.referencePalmert MR, 2001, J CLIN ENDOCR METAB, V86, P2364, DOI 10.1210/jc.86.6.2364eng
hcfmusp.relation.referencePerrier AL, 2000, J BIOL CHEM, V275, P34260, DOI 10.1074/jbc.M004289200eng
hcfmusp.relation.referencePerry JRB, 2014, NATURE, V514, P92, DOI 10.1038/nature13545eng
hcfmusp.relation.referencePerry JRB, 2009, NAT GENET, V41, P648, DOI 10.1038/ng.386eng
hcfmusp.relation.referencePeters TJ, 2015, EPIGENET CHROMATIN, V8, DOI 10.1186/1756-8935-8-6eng
hcfmusp.relation.referencePink RC, 2011, RNA, V17, P792, DOI 10.1261/rna.2658311eng
hcfmusp.relation.referenceRichards EJ, 2006, NAT REV GENET, V7, P395, DOI 10.1038/nrg1834eng
hcfmusp.relation.referenceRitchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007eng
hcfmusp.relation.referenceRzeczkowska PA, 2014, NEUROENDOCRINOLOGY, V99, P139, DOI 10.1159/000362559eng
hcfmusp.relation.referenceSimon D, 2016, EUR J ENDOCRINOL, V174, P1, DOI 10.1530/EJE-15-0488eng
hcfmusp.relation.referenceSkordis N, 2017, HORM-INT J ENDOCRINO, V16, P209eng
hcfmusp.relation.referenceSmallwood SA, 2012, TRENDS GENET, V28, P33, DOI 10.1016/j.tig.2011.09.004eng
hcfmusp.relation.referenceSmith ZD, 2013, NAT REV GENET, V14, P204, DOI 10.1038/nrg3354eng
hcfmusp.relation.referenceSpatz A, 2004, NAT REV CANCER, V4, P617, DOI 10.1038/nrc1413eng
hcfmusp.relation.referenceStrogantsev R, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0672-7eng
hcfmusp.relation.referenceSubramanian A, 2005, P NATL ACAD SCI USA, V102, P15545, DOI 10.1073/pnas.0506580102eng
hcfmusp.relation.referenceThompson EE, 2018, CLIN EPIGENETICS, V10, DOI 10.1186/s13148-018-0491-2eng
hcfmusp.relation.referenceTriche TJ, 2013, NUCLEIC ACIDS RES, V41, DOI 10.1093/nar/gkt090eng
hcfmusp.relation.referenceTukiainen T, 2017, NATURE, V550, P244, DOI 10.1038/nature24265eng
hcfmusp.relation.referenceWATANABE G, 1989, ENDOCRINOLOGY, V125, P92, DOI 10.1210/endo-125-1-92eng
hcfmusp.relation.referenceZhang B, 2005, NUCLEIC ACIDS RES, V33, pW741, DOI 10.1093/nar/gki475eng
hcfmusp.relation.referenceZhang YC, 2013, MOL BIOL EVOL, V30, P2588, DOI 10.1093/molbev/mst148eng
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MCM
Departamento de Clínica Médica - FM/MCM

Artigos e Materiais de Revistas Científicas - HC/ICHC
Instituto Central - HC/ICHC

Artigos e Materiais de Revistas Científicas - LIM/42
LIM/42 - Laboratório de Hormônios e Genética Molecular

Files in This Item:
File Description SizeFormat 
art_BESSA_Methylome_profiling_of_healthy_and_central_precocious_puberty_2018.PDFpublishedVersion (English)1.92 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.