Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorDESIDERI, Debora
dc.contributor.authorZRENNER, Christoph
dc.contributor.authorGORDON, Pedro Caldana
dc.contributor.authorZIEMANN, Ulf
dc.contributor.authorBELARDINELLI, Paolo
dc.identifier.citationPLOS ONE, v.13, n.12, article ID e0208747, 17p, 2018
dc.description.abstractRepetitive transcranial magnetic stimulation (rTMS) can induce excitability changes of a stimulated brain area through synaptic plasticity mechanisms. High-frequency (100 Hz) triplets of rTMS synchronized to the negative but not the positive peak of the ongoing sensorimotor mu-rhythm isolated with the concurrently acquired electroencephalography (EEG) resulted in a reproducible long-term potentiation like increase of motor evoked potential (MEP) amplitude, an index of corticospinal excitability (Zrenner et al. 2018, Brain Stimul 11:374-389). Here, we analyzed the EEG and TMS-EEG data from (Zrenner et al., 2018) to investigate the effects of p-rhythm-phase-dependent burst-rTMS on EEG-based measures of cortical excitability. We used resting-state EEG to assess mu- and beta-power in the motor cortex ipsi- and contralateral to the stimulation, and single-pulse TMS-evoked and induced EEG responses in the stimulated motor cortex. We found that mu-rhythm-phase-dependent burst-rTMS did not significantly change any of these EEG measures, despite the presence of a significant differential and reproducible effect on MEP amplitude. We conclude that EEG measures of cortical excitability do not reflect corticospinal excitability as measured by MEP amplitude. Most likely this is explained by the fact that rTMS induces complex changes at the molecular and synaptic level towards both excitation and inhibition that cannot be differentiated at the macroscopic level by EEG.eng
dc.description.sponsorshipDFG [ZI 542/7-1]
dc.description.sponsorshipIndustry-on-Campus Grant [IoC 211]
dc.description.sponsorshipUniversity of Tubingen Fortune Junior Grant [2287-0-0]
dc.relation.ispartofPlos One
dc.subject.othertranscranial magnetic stimulationeng
dc.subject.otherprimary motor cortexeng
dc.subject.othersynaptic plasticityeng
dc.subject.otheroscillatory activitieseng
dc.titleNil effects of mu-rhythm phase-dependent burst-rTMS on cortical excitability in humans: A resting-state EEG and TMS-EEG studyeng
dc.rights.holderCopyright PUBLIC LIBRARY SCIENCEeng
dc.subject.wosMultidisciplinary Scienceseng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng, Debora:Univ Tubingen, Dept Neurol & Stroke, Tubingen, Germany; Univ Tubingen, Hertie Inst Clin Brain Res, Tubingen, Germany, Christoph:Univ Tubingen, Dept Neurol & Stroke, Tubingen, Germany; Univ Tubingen, Hertie Inst Clin Brain Res, Tubingen, Germany, Ulf:Univ Tubingen, Dept Neurol & Stroke, Tubingen, Germany; Univ Tubingen, Hertie Inst Clin Brain Res, Tubingen, Germany, Paolo:Univ Tubingen, Dept Neurol & Stroke, Tubingen, Germany; Univ Tubingen, Hertie Inst Clin Brain Res, Tubingen, Germany
hcfmusp.publisher.citySAN FRANCISCOeng
hcfmusp.relation.referenceARTOLA A, 1990, NATURE, V347, P69, DOI 10.1038/347069a0eng
hcfmusp.relation.referenceBenali A, 2011, J NEUROSCI, V31, P1193, DOI 10.1523/JNEUROSCI.1379-10.2011eng
hcfmusp.relation.referenceBenShachar D, 1997, J NEURAL TRANSM, V104, P191, DOI 10.1007/BF01273180eng
hcfmusp.relation.referenceBonato C, 2006, CLIN NEUROPHYSIOL, V117, P1699, DOI 10.1016/j.clinph.2006.05.006eng
hcfmusp.relation.referenceBrignani D, 2008, HUM BRAIN MAPP, V29, P603, DOI 10.1002/hbm.20423eng
hcfmusp.relation.referenceBusch NA, 2010, P NATL ACAD SCI USA, V107, P16048, DOI 10.1073/pnas.1004801107eng
hcfmusp.relation.referenceCasarotto S, 2013, BRAIN TOPOGR, V26, P326, DOI 10.1007/s10548-012-0256-8eng
hcfmusp.relation.referenceCasarotto S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010281eng
hcfmusp.relation.referenceCasula EP, 2014, NEUROIMAGE, V98, P225, DOI 10.1016/j.neuroimage.2014.04.065eng
hcfmusp.relation.referenceChung SW, 2017, CLIN NEUROPHYSIOL, V128, P1117, DOI 10.1016/j.clinph.2017.04.005eng
hcfmusp.relation.referenceDonner TH, 2011, TRENDS COGN SCI, V15, P191, DOI 10.1016/j.tics.2011.03.007eng
hcfmusp.relation.referenceEsser SK, 2006, BRAIN RES BULL, V69, P86, DOI 10.1016/j.brainresbull.2005.11.003eng
hcfmusp.relation.referenceFecchio M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184910eng
hcfmusp.relation.referenceFuggetta G, 2005, NEUROIMAGE, V27, P896, DOI 10.1016/j.neuroimage.2005.05.013eng
hcfmusp.relation.referenceFuggetta G, 2008, HUM BRAIN MAPP, V29, P1, DOI 10.1002/hbm.20371eng
hcfmusp.relation.referenceFujiki M, 1997, MOL BRAIN RES, V44, P301, DOI 10.1016/S0169-328X(96)00232-Xeng
hcfmusp.relation.referenceFunke K, 2011, J PHYSIOL-LONDON, V589, P4423, DOI 10.1113/jphysiol.2011.206573eng
hcfmusp.relation.referenceGedankien T, 2017, CLIN NEUROPHYSIOL, V128, P2419, DOI 10.1016/j.clinph.2017.08.034eng
hcfmusp.relation.referenceGordon PC, 2018, BRAIN STIMUL, V11, P1322, DOI 10.1016/j.brs.2018.08.003eng
hcfmusp.relation.referenceGordon PC, 2018, BRAIN STIMUL, V11, P1024, DOI 10.1016/j.brs.2018.06.004eng
hcfmusp.relation.referenceGrandchamp R, 2011, FRONT PSYCHOL, V2, DOI 10.3389/fpsyg.2011.00236eng
hcfmusp.relation.referenceHJORTH B, 1975, ELECTROEN CLIN NEURO, V39, P526, DOI 10.1016/0013-4694(75)90056-5eng
hcfmusp.relation.referenceHuang YZ, 2005, NEURON, V45, P201, DOI 10.1016/j.neuron.2004.12.033eng
hcfmusp.relation.referenceHUERTA PT, 1995, NEURON, V15, P1053, DOI 10.1016/0896-6273(95)90094-2eng
hcfmusp.relation.referenceHUERTA PT, 1993, NATURE, V364, P723, DOI 10.1038/364723a0eng
hcfmusp.relation.referenceHyvarinen A, 1999, IEEE T NEURAL NETWOR, V10, P626, DOI 10.1109/72.761722eng
hcfmusp.relation.referenceHyvarinen A, 2001, INDEPENDENT COMPONEN, Vxxieng
hcfmusp.relation.referenceIlmoniemi RJ, 1997, NEUROREPORT, V8, P3537, DOI 10.1097/00001756-199711100-00024eng
hcfmusp.relation.referenceKeck ME, 2000, EUR J NEUROSCI, V12, P3713, DOI 10.1046/j.1460-9568.2000.00243.xeng
hcfmusp.relation.referenceLabedi A, 2014, BRAIN STIMUL, V7, P394, DOI 10.1016/j.brs.2014.02.010eng
hcfmusp.relation.referenceLEHMANN D, 1980, ELECTROEN CLIN NEURO, V48, P609, DOI 10.1016/0013-4694(80)90419-8eng
hcfmusp.relation.referenceLenz M, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10020eng
hcfmusp.relation.referenceLi BS, 2017, ELIFE, V6, DOI 10.7554/eLife.30552eng
hcfmusp.relation.referenceMassimini M, 2005, SCIENCE, V309, P2228, DOI 10.1126/science.1117256eng
hcfmusp.relation.referenceMcAllister SM, 2011, EUR J NEUROSCI, V33, P1916, DOI 10.1111/j.1460-9568.2011.07673.xeng
hcfmusp.relation.referenceNeuper C, 2005, CLIN NEUROPHYSIOL, V116, P1681, DOI 10.1016/j.clinph.2005.03.013eng
hcfmusp.relation.referenceNiedermeyer E, 2005, ELECTROENCEPHALOGRAP, Vxiiieng
hcfmusp.relation.referenceNoh NA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035080eng
hcfmusp.relation.referenceOostenveld R, 2011, COMPUT INTEL NEUROSC, DOI 10.1155/2011/156869eng
hcfmusp.relation.referencePaus T, 2001, J NEUROPHYSIOL, V86, P1983eng
hcfmusp.relation.referencePeinemann A, 2000, NEUROSCI LETT, V296, P21, DOI 10.1016/S0304-3940(00)01616-5eng
hcfmusp.relation.referencePellicciari MC, 2013, NEUROIMAGE, V83, P569, DOI 10.1016/j.neuroimage.2013.06.076eng
hcfmusp.relation.referencePERRIN F, 1989, ELECTROEN CLIN NEURO, V72, P184, DOI 10.1016/0013-4694(89)90180-6eng
hcfmusp.relation.referencePremoli I, 2017, NEUROIMAGE, V163, P1, DOI 10.1016/j.neuroimage.2017.09.023eng
hcfmusp.relation.referencePremoli I, 2014, J NEUROSCI, V34, P5603, DOI 10.1523/JNEUROSCI.5089-13.2014eng
hcfmusp.relation.referenceRidding MC, 2007, NAT REV NEUROSCI, V8, P559, DOI 10.1038/nrn2169eng
hcfmusp.relation.referenceRocchi L, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00400eng
hcfmusp.relation.referenceRogasch NC, 2017, NEUROIMAGE, V147, P934, DOI 10.1016/j.neuroimage.2016.10.031eng
hcfmusp.relation.referenceRogasch NC, 2014, NEUROIMAGE, V101, P425, DOI 10.1016/j.neuroimage.2014.07.037eng
hcfmusp.relation.referenceRosanova M, 2009, J NEUROSCI, V29, P7679, DOI 10.1523/JNEUROSCI.0445-09.2009eng
hcfmusp.relation.referenceRossi S, 2009, CLIN NEUROPHYSIOL, V120, P2008, DOI 10.1016/j.clinph.2009.08.016eng
hcfmusp.relation.referenceRossini PM, 2015, CLIN NEUROPHYSIOL, V126, P1071, DOI 10.1016/j.clinph.2015.02.001eng
hcfmusp.relation.referenceSiebner HR, 2000, NEUROLOGY, V54, P956, DOI 10.1212/WNL.54.4.956eng
hcfmusp.relation.referenceSjostrom PJ, 2006, NEURON, V51, P227, DOI 10.1016/j.neuron.2006.06.017eng
hcfmusp.relation.referenceTallon-Baudry C, 1999, TRENDS COGN SCI, V3, P151, DOI 10.1016/S1364-6613(99)01299-1eng
hcfmusp.relation.referenceTrippe J, 2009, EXP BRAIN RES, V199, P411, DOI 10.1007/s00221-009-1961-8eng
hcfmusp.relation.referenceVan der Werf YD, 2006, EXP BRAIN RES, V175, P231, DOI 10.1007/s00221-006-0551-2eng
hcfmusp.relation.referenceVeniero D, 2011, PSYCHOPHYSIOLOGY, V48, P1381, DOI 10.1111/j.1469-8986.2011.01218.xeng
hcfmusp.relation.referenceVernet M, 2013, EUR J NEUROSCI, V37, P598, DOI 10.1111/ejn.12069eng
hcfmusp.relation.referenceVlachos A, 2012, J NEUROSCI, V32, P17514, DOI 10.1523/JNEUROSCI.0409-12.2012eng
hcfmusp.relation.referenceZiemann U, 2008, BRAIN STIMUL, V1, P164, DOI 10.1016/j.brs.2008.06.006eng
hcfmusp.relation.referenceZrenner C, 2018, BRAIN STIMUL, V11, P374, DOI 10.1016/j.brs.2017.11.016eng
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/Outros
Outros departamentos - FM/Outros

Files in This Item:
File Description SizeFormat 
art_DESIDERI_Nil_effects_of_murhythm_phasedependent_burstrTMS_on_cortical_2018.PDFpublishedVersion (English)2.96 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.