Please use this identifier to cite or link to this item:
https://observatorio.fm.usp.br/handle/OPI/31462
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | Sistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP | |
dc.contributor.author | BORGES-JUNIOR, Renato | |
dc.contributor.author | SALVINI, Rogerio | |
dc.contributor.author | NIERENBERG, Andrew A. | |
dc.contributor.author | SACHS, Gary S. | |
dc.contributor.author | LAFER, Beny | |
dc.contributor.author | DIAS, Rodrigo S. | |
dc.date.accessioned | 2019-04-24T18:18:15Z | - |
dc.date.available | 2019-04-24T18:18:15Z | - |
dc.date.issued | 2018 | |
dc.identifier.citation | PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), p.613-616, 2018 | |
dc.identifier.isbn | 978-1-5386-5488-0 | |
dc.identifier.issn | 2156-1125 | |
dc.identifier.uri | https://observatorio.fm.usp.br/handle/OPI/31462 | - |
dc.description.abstract | Bipolar disorder (BD) is a mood disorder characterized by recurrent episodes of depression and mania/hypomania. Depressive relapse in BD reach rates close to 50% in 1 year and 70% in up to 4 years of treatment. Several studies have been developed to discover more efficient treatments for BD and prevent relapses. However, most of relapse studies used only statistical methods. We aim to analyze the performance of machine learning algorithms in predicting depressive relapse using only clinical data from patients. Five well-used machine learning algorithms (Support Vector Machines, Random Forests, Naive Bayes and Multilayer Perceptron) were applied to the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) dataset of a cohort of 800 patients who became euthymic during the study and were followed up for 1 year: 507 presented a depressive relapse and 293 did not. The algorithms showed reasonable performance in the prediction task, ranging from 61% to 80% in the F-measure. Random Forest algorithm had a higher average of performance (Relapse Group 68%; No Relapse Group 74%), although, the performance between classifiers showed no significant difference. Random Forest analysis demonstrated that the three most important mood symptoms observed were: interest, depression mood and energy. Results show that the machine learning algorithms could be seen as a sensible approach to better support medical decision-making in the BD treatment and prevention of future relapses. | eng |
dc.description.sponsorship | CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) | |
dc.language.iso | eng | |
dc.publisher | IEEE | eng |
dc.relation.ispartof | Proceedings 2018 Ieee International Conference on Bioinformatics and Biomedicine (bibm) | |
dc.relation.ispartofseries | IEEE International Conference on Bioinformatics and Biomedicine-BIBM | |
dc.rights | restrictedAccess | eng |
dc.subject | bipolar disorder | eng |
dc.subject | mental health | eng |
dc.subject | depressive relapse | eng |
dc.subject | machine learning | eng |
dc.subject | artificial intelligence | eng |
dc.subject.other | treatment enhancement program | eng |
dc.subject.other | recurrence | eng |
dc.subject.other | prevalence | eng |
dc.subject.other | rates | eng |
dc.title | Forecasting depressive relapse in Bipolar Disorder from clinical data | eng |
dc.type | conferenceObject | eng |
dc.rights.holder | Copyright IEEE | eng |
dc.description.conferencedate | DEC 03-06, 2018 | |
dc.description.conferencelocal | Madrid, SPAIN | |
dc.description.conferencename | IEEE International Conference on Bioinformatics and Biomedicine (BIBM) | |
dc.subject.wos | Computer Science, Interdisciplinary Applications | eng |
dc.subject.wos | Mathematical & Computational Biology | eng |
dc.type.category | proceedings paper | eng |
dc.type.version | publishedVersion | eng |
hcfmusp.author.external | BORGES-JUNIOR, Renato:Univ Fed Goias, Inst Informat, Goiania, Go, Brazil | |
hcfmusp.author.external | SALVINI, Rogerio:Univ Fed Goias, Inst Informat, Goiania, Go, Brazil | |
hcfmusp.author.external | NIERENBERG, Andrew A.:Harvard Med Sch, Massachusetts Gen Hosp, Dept Psychiat, Boston, MA 02115 USA | |
hcfmusp.author.external | SACHS, Gary S.:Harvard Med Sch, Massachusetts Gen Hosp, Dept Psychiat, Boston, MA 02115 USA | |
hcfmusp.description.beginpage | 613 | |
hcfmusp.description.endpage | 616 | |
hcfmusp.origem | WOS | |
hcfmusp.origem.id | WOS:000458654000103 | |
hcfmusp.origem.id | 2-s2.0-85062505283 | |
hcfmusp.publisher.city | NEW YORK | eng |
hcfmusp.publisher.country | USA | eng |
hcfmusp.relation.reference | Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 | eng |
hcfmusp.relation.reference | Deckersbach T., 2016, J AFFECTIVE DISORDER | eng |
hcfmusp.relation.reference | Dem J., 2006, J MACH LEARN RES, V7, P1 | eng |
hcfmusp.relation.reference | Ferrari AJ, 2016, BIPOLAR DISORD, V18, P440, DOI 10.1111/bdi.12423 | eng |
hcfmusp.relation.reference | Goldstein BA, 2017, J AM MED INFORM ASSN, V24, P198, DOI 10.1093/jamia/ocw042 | eng |
hcfmusp.relation.reference | Goodwin FK, 2007, MANIC DEPRESSIVE ILL, V1 | eng |
hcfmusp.relation.reference | Hall M., 2009, SIGKDD EXPLORATIONS, V11, P10, DOI [10.1145/1656274.1656278, DOI 10.1145/1656274.1656278] | eng |
hcfmusp.relation.reference | Kitchenham B., 2004, KEELE U TECH REP, V33, P1 | eng |
hcfmusp.relation.reference | Kohavi R., 1995, IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, P1137 | eng |
hcfmusp.relation.reference | Librenza-Garcia D, 2017, NEUROSCI BIOBEHAV R, V80, P538, DOI 10.1016/j.neubiorev.2017.07.004 | eng |
hcfmusp.relation.reference | Perlis RH, 2006, AM J PSYCHIAT, V163, P217, DOI 10.1176/appi.ajp.163.2.217 | eng |
hcfmusp.relation.reference | Perlis RH, 2009, BIPOLAR DISORD, V11, P391, DOI 10.1111/j.1399-5618.2009.00686.x | eng |
hcfmusp.relation.reference | Sachs GS, 2003, BIOL PSYCHIAT, V53, P1028, DOI 10.1016/S0006-3223(03)00165-3 | eng |
hcfmusp.relation.reference | Salvini R, 2015, STUD HEALTH TECHNOL, V216, P741, DOI 10.3233/978-1-61499-564-7-741 | eng |
hcfmusp.relation.reference | Shim IH, 2015, J AFFECT DISORDERS, V173, P120, DOI 10.1016/j.jad.2014.10.061 | eng |
hcfmusp.relation.reference | Vazquez GH, 2015, EUR NEUROPSYCHOPHARM, V25, P1501, DOI 10.1016/j.euroneuro.2015.07.013 | eng |
dc.description.index | PubMed | eng |
dc.identifier.eissn | 2156-1133 | |
hcfmusp.citation.scopus | 4 | - |
hcfmusp.scopus.lastupdate | 2023-01-06 | - |
Appears in Collections: | Comunicações em Eventos - FM/MPS Comunicações em Eventos - HC/IPq Comunicações em Eventos - LIM/21 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
art_BORGES-JUNIOR_Forecasting_depressive_relapse_in_Bipolar_Disorder_from_clinical_2018.PDF Restricted Access | publishedVersion (English) | 104.34 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.