Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorNEOFITI-PAPI, Bianca
dc.contributor.authorALBUQUERQUE, Ruda P.
dc.contributor.authorMIRANDA-RODRIGUES, Manuela
dc.contributor.authorGONCALVES, Natalia J. N.
dc.contributor.authorJORGETTI, Vanda
dc.contributor.authorBRUM, Patricia C.
dc.contributor.authorFERREIRA, Julio C. B.
dc.contributor.authorGOUVEIA, Cecilia H. A.
dc.identifier.citationTHYROID, v.29, n.8, p.1060-1072, 2019
dc.description.abstractBackground: Thyrotoxicosis increases bone turnover, resulting in net bone loss. Sympathetic nervous system (SNS) activation, via beta 2-adrenoceptor (beta 2-AR) signaling, also has osteopenic effects. Because thyroid hormones (TH) interact with the SNS to regulate several physiological processes, we hypothesized that this interaction also occurs to regulate bone mass. Previous studies support this hypothesis, as alpha 2-AR knockout (KO) mice are less susceptible to thyrotoxicosis-induced osteopenia. Here, we evaluated whether TH-SNS interactions in bone involve beta 2-AR signaling. Methods: Thyrotoxicosis was induced in 120-day-old female and male mice with beta 2-AR gene inactivation (beta 2-AR(-/-)) by daily treatment with supraphysiological doses of triiodothyronine (T3) for 12 weeks. The impact of thyrotoxicosis on femoral bone microarchitecture, remodeling, fracture risk, and gene expression of the receptor activator of nuclear factor-kappa-B (RANK)-RANK ligand (RANKL)-osteoprotegerin (OPG) pathway was evaluated. In addition, the effect of the beta 2-AR-specific agonist clenbuterol (CL) on cAMP accumulation was determined in osteoblastic (MC3T3-E1) cells treated with T3 and/or 17 beta-estradiol (E2). Results: Thyrotoxicosis negatively affected trabecular bone microarchitecture in wild-type (WT) females, but this effect was milder or nonexistent in beta 2-AR(-/-) animals, whereas the opposite was seen in males. T3 treatment increased the femoral RANKL/OPG mRNA ratio and the endosteal perimeter and medullary area of the diaphysis in WT females and males, but not in beta 2-AR(-/-) mice, suggesting that T3 promotes endosteal resorption in cortical bone, in a mechanism that involves beta 2-AR signaling. T3 treatment increased endocortical mineral apposition rate only in WT females but not in beta 2-AR(-/-) mice, suggesting that TH also induce bone formation in a beta 2-AR signaling-dependent mechanism. T3 treatment decreased femoral resistance to fracture only in WT females, but not in KO mice. E2 and CL similarly increased cAMP accumulation in MC3T3-E1 cells; whereas T3 alone had no effect, but it completely blocked E2-stimulated cAMP accumulation, suggesting that some T3 effects on bone may involve E2/cAMP signaling in osteoblasts. Conclusions: These findings sustain the hypothesis that T3 interacts with the SNS to regulate bone morphophysiology in a beta 2-AR signaling-dependent mechanism. The data also reveal sex as an important modifier of skeletal manifestations of thyrotoxicosis, as well as a modifier of the TH-SNS interactions to control bone microarchitecture, remodeling, and resistance to fracture.eng
dc.publisherMARY ANN LIEBERT, INCeng
dc.subjectthyroid hormoneseng
dc.subjectsympathetic nervous systemeng
dc.subjectbeta 2-adrenoceptoreng
dc.subjectthyrotoxicosis and boneeng
dc.titleThyrotoxicosis Involves beta 2-Adrenoceptor Signaling to Negatively Affect Microarchitecture and Biomechanical Properties of the Femureng
dc.rights.holderCopyright MARY ANN LIEBERT, INCeng
dc.subject.wosEndocrinology & Metabolismeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng, Bianca:Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Av Prof LineuPrestes 2415, BR-05508000 Sao Paulo, SP, Brazil; Univ Sao Paulo, Sch Med, Sao Paulo, Brazil, Ruda P.:Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Av Prof LineuPrestes 2415, BR-05508000 Sao Paulo, SP, Brazil, Manuela:Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Av Prof LineuPrestes 2415, BR-05508000 Sao Paulo, SP, Brazil; Univ Western Ontario, Dept Genet Med, London, ON, Canada, Natalia J. N.:RDO Diagnost Med, Sao Paulo, Brazil, Patricia C.:Univ Sao Paulo, Sch Phys Educ & Sport, Sao Paulo, Brazil, Julio C. B.:Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Av Prof LineuPrestes 2415, BR-05508000 Sao Paulo, SP, Brazil, Cecilia H. A.:Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Av Prof LineuPrestes 2415, BR-05508000 Sao Paulo, SP, Brazil; Univ Sao Paulo, Sch Med, Sao Paulo, Brazil
hcfmusp.publisher.cityNEW ROCHELLEeng
hcfmusp.relation.referenceALLAIN TJ, 1995, BONE, V16, P505, DOI 10.1016/8756-3282(95)00074-Neng
hcfmusp.relation.referenceBEYLOT M, 1982, NOUV PRESSE MED, V11, P989eng
hcfmusp.relation.referenceBILEZIKIAN JP, 1983, ENDOCR REV, V4, P378, DOI 10.1210/edrv-4-4-378eng
hcfmusp.relation.referenceBonnet N, 2005, BONE, V37, P622, DOI 10.1016/j.bone.2005.07.012eng
hcfmusp.relation.referenceCavalie H, 2002, J APPL PHYSIOL, V93, P2034, DOI 10.1152/japplphysiol.00472.2002eng
hcfmusp.relation.referenceChruscinski AJ, 1999, J BIOL CHEM, V274, P16694, DOI 10.1074/jbc.274.24.16694eng
hcfmusp.relation.referenceCosta-e-Sousa RH, 2012, ENDOCRINOLOGY, V153, P4128, DOI 10.1210/en.2012-1467eng
hcfmusp.relation.referenceTeixeira MBCG, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146795eng
hcfmusp.relation.referenceDucy P, 2000, CELL, V100, P197, DOI 10.1016/S0092-8674(00)81558-5eng
hcfmusp.relation.referenceElefteriou F, 2005, NATURE, V434, P514, DOI 10.1038/nature03398eng
hcfmusp.relation.referenceElefteriou F, 2014, CALCIFIED TISSUE INT, V94, P140, DOI 10.1007/s00223-013-9752-4eng
hcfmusp.relation.referenceFALLON MD, 1983, ARCH INTERN MED, V143, P442, DOI 10.1001/archinte.143.3.442eng
hcfmusp.relation.referenceFonseca TL, 2014, AM J PHYSIOL-ENDOC M, V307, pE408, DOI 10.1152/ajpendo.00643.2013eng
hcfmusp.relation.referenceFonseca TL, 2011, J BONE MINER RES, V26, P591, DOI 10.1002/jbmr.243eng
hcfmusp.relation.referenceFonseca TL, 2009, THESISeng
hcfmusp.relation.referenceFRASER SA, 1971, LANCET, V1, P981eng
hcfmusp.relation.referenceFROST HM, 1991, BONE, V12, P429, DOI 10.1016/8756-3282(91)90032-Eeng
hcfmusp.relation.referenceGong YS, 2006, J ASIAN NAT PROD RES, V8, P649, DOI 10.1080/10286020500246063eng
hcfmusp.relation.referenceGouveia CHA, 1997, J BONE MINER RES, V12, P2098, DOI 10.1359/jbmr.1997.12.12.2098eng
hcfmusp.relation.referenceHein L, 1999, NATURE, V402, P181eng
hcfmusp.relation.referenceHIGH WB, 1981, AM J PATHOL, V102, P438eng
hcfmusp.relation.referenceIsogai Y, 1996, J BONE MINER RES, V11, P1384eng
hcfmusp.relation.referenceKajimura D, 2011, J EXP MED, V208, P841, DOI 10.1084/jem.20102608eng
hcfmusp.relation.referenceKuo TR, 2017, BIOMARK RES, V5, DOI 10.1186/s40364-017-0097-4eng
hcfmusp.relation.referenceLetellier K, 2008, J PINEAL RES, V45, P383, DOI 10.1111/j.1600-079X.2008.00603.xeng
hcfmusp.relation.referenceLivak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262eng
hcfmusp.relation.referenceMAJESKA RJ, 1982, CALCIFIED TISSUE INT, V34, P59, DOI 10.1007/BF02411210eng
hcfmusp.relation.referenceMARTINEAU L, 1992, CLIN SCI, V83, P615, DOI 10.1042/cs0830615eng
hcfmusp.relation.referenceMartins GM, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00486eng
hcfmusp.relation.referenceMCCABE LR, 1995, EXP CELL RES, V218, P255, DOI 10.1006/excr.1995.1154eng
hcfmusp.relation.referenceMOSEKILDE L, 1978, ACTA MED SCAND, V204, P97eng
hcfmusp.relation.referenceONGPHIPHADHANAKUL B, 1992, J BONE MINER RES, V7, P1227eng
hcfmusp.relation.referenceOPPENHEIMER JH, 1991, J CLIN INVEST, V87, P125, DOI 10.1172/JCI114961eng
hcfmusp.relation.referencePapaioannou S, 1999, BBA-MOL CELL RES, V1449, P284, DOI 10.1016/S0167-4889(99)00025-7eng
hcfmusp.relation.referencePARTRIDGE NC, 1994, J CELL BIOCHEM, V55, P321, DOI 10.1002/jcb.240550308eng
hcfmusp.relation.referencePierroz DD, 2012, J BONE MINER RES, V27, P1252, DOI 10.1002/jbmr.1594eng
hcfmusp.relation.referenceRakov H, 2017, BIOL SEX DIFFER, V8, DOI 10.1186/s13293-017-0159-1eng
hcfmusp.relation.referenceRakov H, 2016, BIOL SEX DIFFER, V7, DOI 10.1186/s13293-016-0089-3eng
hcfmusp.relation.referenceRIXON RH, 1994, J BONE MINER RES, V9, P1179eng
hcfmusp.relation.referenceRohrer DK, 1999, J BIOL CHEM, V274, P16701, DOI 10.1074/jbc.274.24.16701eng
hcfmusp.relation.referenceRozanski A, 2013, MOL ENDOCRINOL, V27, P2055, DOI 10.1210/me.2013-1018eng
hcfmusp.relation.referenceRUDE RK, 1976, NEW ENGL J MED, V294, P431, DOI 10.1056/NEJM197602192940807eng
hcfmusp.relation.referenceSEEDAT YK, 1970, BRIT MED J, V3, P525, DOI 10.1136/bmj.3.5721.525-deng
hcfmusp.relation.referenceSHAHSHAHANI MN, 1978, AM J MED SCI, V275, P199, DOI 10.1097/00000441-197803000-00011eng
hcfmusp.relation.referenceShi WG, 2017, J BIOL CHEM, V292, P20883, DOI 10.1074/jbc.M117.809517eng
hcfmusp.relation.referenceSilva JE, 2008, THYROID, V18, P157, DOI 10.1089/thy.2007.0252eng
hcfmusp.relation.referenceSimonet WS, 1997, CELL, V89, P309, DOI 10.1016/S0092-8674(00)80209-3eng
hcfmusp.relation.referenceSuwanwalaikorn S, 1996, EUR J ENDOCRINOL, V134, P655, DOI 10.1530/eje.0.1340655eng
hcfmusp.relation.referenceTakeda S, 2002, CELL, V111, P305, DOI 10.1016/S0092-8674(02)01049-8eng
hcfmusp.relation.referenceTang LY, 1996, J CELL PHYSIOL, V166, P76eng
hcfmusp.relation.referenceTogari A, 2002, MICROSC RES TECHNIQ, V58, P77, DOI 10.1002/jemt.10121eng
hcfmusp.relation.referencevonRecklinghausen FC, 1891, FESTSCHRIFT R VIRCHO, P1eng
hcfmusp.relation.referenceWada T, 2006, TRENDS MOL MED, V12, P17, DOI 10.1016/j.molmed.2005.11.007eng
Appears in Collections:

Artigos e Materiais de Revistas Científicas - HC/ICHC
Instituto Central - HC/ICHC

Artigos e Materiais de Revistas Científicas - LIM/16
LIM/16 - Laboratório de Fisiopatologia Renal

Files in This Item:
File Description SizeFormat 
  Restricted Access
publishedVersion (English)723.92 kBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.