Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorTOEPFER, Christopher N.
dc.contributor.authorGARFINKEL, Amanda C.
dc.contributor.authorVENTURINI, Gabriela
dc.contributor.authorWAKIMOTO, Hiroko
dc.contributor.authorREPETTI, Giuliana
dc.contributor.authorALAMO, Lorenzo
dc.contributor.authorSHARMA, Arun
dc.contributor.authorAGARWAL, Radhika
dc.contributor.authorEWOLDT, Jourdan F.
dc.contributor.authorCLOONAN, Paige
dc.contributor.authorLETENDRE, Justin
dc.contributor.authorLUN, Mingyue
dc.contributor.authorOLIVOTTO, Iacopo
dc.contributor.authorCOLAN, Steve
dc.contributor.authorASHLEY, Euan
dc.contributor.authorJACOBY, Daniel
dc.contributor.authorMICHELS, Michelle
dc.contributor.authorREDWOOD, Charles S.
dc.contributor.authorWATKINS, Hugh C.
dc.contributor.authorDAY, Sharlene M.
dc.contributor.authorSTAPLES, James F.
dc.contributor.authorPADRON, Raul
dc.contributor.authorCHOPRA, Anant
dc.contributor.authorHO, Carolyn Y.
dc.contributor.authorCHEN, Christopher S.
dc.contributor.authorPEREIRA, Alexandre C.
dc.contributor.authorSEIDMAN, Jonathan G.
dc.contributor.authorSEIDMAN, Christine E.
dc.identifier.citationCIRCULATION, v.141, n.10, p.828-842, 2020
dc.description.abstractBackground: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. Methods: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. Results: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. Conclusions: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.eng
dc.description.sponsorshipWellcome TrustWellcome Trust [206466/Z/17/Z]
dc.description.sponsorshipSarnoff Foundation
dc.description.sponsorshipEngineering Research Centers Program of the National Science FoundationNational Science Foundation (NSF) [EEC-1647837]
dc.description.sponsorshipMyoKardia Inc
dc.description.sponsorshipItalian Ministry of HealthMinistry of Health, Italy [RF-2013-02356787, NET-2011-02347173]
dc.description.sponsorshipFAS-Salute 2014
dc.description.sponsorshipRegione ToscanaRegione Toscana
dc.description.sponsorshipTaubman Medical Institute
dc.description.sponsorshipBritish Heart FoundationBritish Heart Foundation [RG/12/16/29939]
dc.description.sponsorshipBritish Heart Foundation Centre of Research Excellence (Oxford)
dc.description.sponsorshipFondation LeducqLeducq Foundation
dc.description.sponsorshipNational Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [1P50HL112349, 1U01HL117006, HL11572784, U01HL098166, 5R01HL080494, 5R01HL084553]
dc.description.sponsorshipHoward Hughes Medical InstituteHoward Hughes Medical Institute
dc.description.sponsorshipSato o Paulo Research Foundation [2017/20593-7]
dc.description.sponsorshipAmerican Heart AssociationAmerican Heart Association
dc.subjectcardiovascular physiological phenomenaeng
dc.subject.otherbeta-cardiac myosineng
dc.titleMyosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathyeng
dc.rights.holderCopyright LIPPINCOTT WILLIAMS & WILKINSeng
dc.subject.wosCardiac & Cardiovascular Systemseng
dc.subject.wosPeripheral Vascular Diseaseeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng, Christopher N.:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA; Univ Oxford, Radcliffe Dept Med, Cardiovasc Med, Oxford, England; Univ Oxford, Wellcome Ctr Human Genet, Oxford, England, Amanda C.:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA, Hiroko:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA, Giuliana:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA, Lorenzo:IVIC, Ctr Biol Estruct, Caracas, Venezuela, Arun:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA, Radhika:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA, Jourdan F.:Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA, Paige:Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA, Justin:Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA, Mingyue:Brigham & Womens Hosp, Dept Med, Div Genet, 75 Francis St, Boston, MA 02115 USA, Iacopo:Careggi Univ Hosp, Cardiomyopathy Unit, Florence, Italy; Careggi Univ Hosp, Genet Unit, Florence, Italy, Steve:Boston Childrens Hosp, Dept Cardiol, Boston, MA USA, Euan:Stanford Univ, Ctr Inherited Cardiovasc Dis, Stanford, CA 94305 USA, Daniel:Yale Sch Med, Dept Internal Med, Sect Cardiovasc Dis, New Haven, CT USA, Michelle:Erasmus MC, Dept Cardiol, Thorax Ctr, Rotterdam, Netherlands, Charles S.:Univ Oxford, Radcliffe Dept Med, Cardiovasc Med, Oxford, England, Hugh C.:Univ Oxford, Radcliffe Dept Med, Cardiovasc Med, Oxford, England; Univ Oxford, Wellcome Ctr Human Genet, Oxford, England, Sharlene M.:Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA, James F.:Univ Western Ontario, Dept Biol, London, ON, Canada, Raul:IVIC, Ctr Biol Estruct, Caracas, Venezuela; Univ Massachusetts, Dept Radiol, Sch Med, Div Cell Biol & Imaging, Worcester, MA USA, Anant:Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA, Carolyn Y.:Brigham & Womens Hosp, Cardiovasc Div, 75 Francis St, Boston, MA 02115 USA, Christopher S.:Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA, Jonathan G.:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA, Christine E.:Harvard Med Sch, Dept Genet, NRB Room 256,77 Ave Louis Pasteur, Boston, MA 02115 USA; Brigham & Womens Hosp, Cardiovasc Div, 75 Francis St, Boston, MA 02115 USA; Howard Hughes Med Inst, Chevy Chase, MD USA
hcfmusp.relation.referenceAlamo L, 2017, ELIFE, V6, DOI 10.7554/eLife.24634eng
hcfmusp.relation.referenceBARRY WH, 1993, CIRCULATION, V87, P1806, DOI 10.1161/01.CIR.87.6.1806eng
hcfmusp.relation.referenceBloemink M, 2014, J BIOL CHEM, V289, P5158, DOI 10.1074/jbc.M113.511204eng
hcfmusp.relation.referenceChopra A, 2018, DEV CELL, V44, P87, DOI 10.1016/j.devcel.2017.12.012eng
hcfmusp.relation.referenceChung JH, 2016, FRONT PHYSIOL, V7, DOI [10.3389/fphys.2016.00562, 10.3339/fphys.2016.00562]eng
hcfmusp.relation.referenceCrilley JG, 2003, J AM COLL CARDIOL, V41, P1776, DOI 10.1016/S0735-1097(02)03009-7eng
hcfmusp.relation.referenceCurtin NA, 2018, NATURE, V563, P393, DOI 10.1038/s41586-018-0602-4eng
hcfmusp.relation.referencede Tombe PP, 2010, J MOL CELL CARDIOL, V48, P851, DOI 10.1016/j.yjmcc.2009.12.017eng
hcfmusp.relation.referenceGeisterferLowrance AAT, 1996, SCIENCE, V272, P731, DOI 10.1126/science.272.5262.731eng
hcfmusp.relation.referenceGorski PA, 2015, CELL METAB, V21, P183, DOI 10.1016/j.cmet.2015.01.005eng
hcfmusp.relation.referenceHamdani Nazha, 2017, Biophys Rev, V9, P225, DOI 10.1007/s12551-017-0263-9eng
hcfmusp.relation.referenceHinson JT, 2015, SCIENCE, V349, P982, DOI 10.1126/science.aaa5458eng
hcfmusp.relation.referenceHo CY, 2018, CIRCULATION, V138, P1387, DOI 10.1161/CIRCULATIONAHA.117.033200eng
hcfmusp.relation.referenceHo CY, 2002, CIRCULATION, V105, P2992, DOI 10.1161/01.CIR.0000019070.70491.6Deng
hcfmusp.relation.referenceHooijman P, 2011, BIOPHYS J, V100, P1969, DOI 10.1016/j.bpj.2011.02.061eng
hcfmusp.relation.referenceIngwall JS, 2002, ATP HEARTeng
hcfmusp.relation.referenceKawana M, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1601959eng
hcfmusp.relation.referenceKensler RW, 2017, P NATL ACAD SCI USA, V114, pE1355, DOI 10.1073/pnas.1614020114eng
hcfmusp.relation.referenceLayland J, 2005, CARDIOVASC RES, V66, P12, DOI 10.1016/j.cardiores.2004.12.022eng
hcfmusp.relation.referenceLee KY, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9054eng
hcfmusp.relation.referenceLee KH, 2018, P NATL ACAD SCI USA, V115, pE1991, DOI 10.1073/pnas.1715247115eng
hcfmusp.relation.referenceLowey S, 2018, P NATL ACAD SCI USA, V115, P11238, DOI 10.1073/pnas.1802967115eng
hcfmusp.relation.referenceMacCannell ADV, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.174508eng
hcfmusp.relation.referenceMacIntyre C, 2016, CIRCULATION, V133, P1901, DOI 10.1161/CIRCULATIONAHA.115.015085eng
hcfmusp.relation.referenceMathers KE, 2017, J COMP PHYSIOL B, V187, P227, DOI 10.1007/s00360-016-1022-0eng
hcfmusp.relation.referenceMcNamara JW, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180064eng
hcfmusp.relation.referenceMcNamara JW, 2016, J MOL CELL CARDIOL, V94, P65, DOI 10.1016/j.yjmcc.2016.03.009eng
hcfmusp.relation.referenceMoore JR, 2012, CIRC RES, V111, P375, DOI 10.1161/CIRCRESAHA.110.223842eng
hcfmusp.relation.referenceMORANO I, 1992, BASIC RES CARDIOL, V87, P129eng
hcfmusp.relation.referenceMosqueira D, 2018, EUR HEART J, V39, P3879, DOI 10.1093/eurheartj/ehy249eng
hcfmusp.relation.referenceNag S, 2017, NAT STRUCT MOL BIOL, V24, P525, DOI 10.1038/nsmb.3408eng
hcfmusp.relation.referenceNag S, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500511eng
hcfmusp.relation.referenceNeubauer S, 2007, NEW ENGL J MED, V356, P1140, DOI 10.1056/NEJMra063052eng
hcfmusp.relation.referenceRitterhoff J, 2017, CARDIOVASC RES, V113, P411, DOI 10.1093/cvr/cvx017eng
hcfmusp.relation.referenceRohde JA, 2018, P NATL ACAD SCI USA, V115, pE7486, DOI 10.1073/pnas.1720342115eng
hcfmusp.relation.referenceSadayappan S, 2005, CIRC RES, V97, P1156, DOI 10.1161/01.RES.0000190605.79013.4deng
hcfmusp.relation.referenceSchiaffino S, 2011, PHYSIOL REV, V91, P1447, DOI 10.1152/physrev.00031.2010eng
hcfmusp.relation.referenceSequeira V, 2013, CIRC RES, V112, P1491, DOI 10.1161/CIRCRESAHA.111.300436eng
hcfmusp.relation.referenceSharma Arun, 2018, Curr Protoc Hum Genet, V96, DOI 10.1002/cphg.53eng
hcfmusp.relation.referenceSharma Arun, 2018, Curr Protoc Hum Genet, V96, DOI 10.1002/cphg.52eng
hcfmusp.relation.referenceShen WQ, 1999, CIRCULATION, V100, P2113, DOI 10.1161/01.CIR.100.20.2113eng
hcfmusp.relation.referenceSommese RF, 2013, P NATL ACAD SCI USA, V110, P12607, DOI 10.1073/pnas.1309493110eng
hcfmusp.relation.referenceSpudich JA, 2014, BIOPHYS J, V106, P1236, DOI 10.1016/j.bpj.2014.02.011eng
hcfmusp.relation.referenceTeekakirikul P, 2010, J CLIN INVEST, V120, P3520, DOI 10.1172/JCI42028eng
hcfmusp.relation.referenceToepfer CN, 2019, CIRC RES, V124, P1172, DOI 10.1161/CIRCRESAHA.118.314505eng
hcfmusp.relation.referenceToepfer CN, 2019, SCI TRANSL MED, V11, DOI 10.1126/scitranslmed.aat1199eng
hcfmusp.relation.referenceToepfer CN, 2016, J PHYSIOL-LONDON, V594, P5237, DOI 10.1113/JP272441eng
hcfmusp.relation.referenceValkovic L, 2019, J CARDIOVASC MAGN R, V21, DOI 10.1186/s12968-019-0529-4eng
hcfmusp.relation.referencevan der Velden J, 2018, CARDIOVASC RES, V114, P1273, DOI 10.1093/cvr/cvy147eng
hcfmusp.relation.referenceVogt M, 2014, J APPL PHYSIOL, V116, P1446, DOI 10.1152/japplphysiol.00146.2013eng
Appears in Collections:

Artigos e Materiais de Revistas Científicas - HC/InCor
Instituto do Coração - HC/InCor

Artigos e Materiais de Revistas Científicas - LIM/13
LIM/13 - Laboratório de Genética e Cardiologia Molecular

Files in This Item:
File Description SizeFormat 
art_TOEPFER_Myosin_Sequestration_Regulates_Sarcomere_Function_Cardiomyocyte_Energetics_and_2020.PDFpublishedVersion (English)2.9 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.