Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/37057
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorCRAIG, Chesney E.
dc.contributor.authorJENKINSON, Ned J.
dc.contributor.authorBRITTAIN, John-Stuart
dc.contributor.authorGROTHE, Michel J.
dc.contributor.authorROCHESTER, Lynn
dc.contributor.authorSILVERDALE, Monty
dc.contributor.authorALHO, Ana T. D. L.
dc.contributor.authorALHO, Eduardo J. L.
dc.contributor.authorHOLMES, Paul S.
dc.contributor.authorRAY, Nicola J.
dc.date.accessioned2020-08-20T13:26:15Z-
dc.date.available2020-08-20T13:26:15Z-
dc.date.issued2020
dc.identifier.citationMOVEMENT DISORDERS, v.35, n.7, p.1199-1207, 2020
dc.identifier.issn0885-3185
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/37057-
dc.description.abstractBackground There is an urgent need to identify individuals at risk of postural instability and gait difficulties, and the resulting propensity for falls, in Parkinson's disease. Objectives Given known relationships between posture and gait and degeneration of the cholinergic pedunculopontine nucleus, we investigated whether metrics of pedunculopontine nucleus microstructural integrity hold independent utility for predicting future postural instability and gait difficulties and whether they could be combined with other candidate biomarkers to improve prognostication of these symptoms. Methods We used stereotactic mapping of the pedunculopontine nucleus and diffusion tensor imaging to extract baseline pedunculopontine nucleus diffusivity metrics in 147 participants with Parkinson's disease and 65 controls enrolled in the Parkinson's Progression Markers Initiative. We also recorded known candidate markers of posture and gait changes: loss of caudate dopamine and CSF beta-amyloid 1-42 levels at baseline; as well as longitudinal progression motor symptoms over 72-months. Results Survival analyses revealed that reduced dopamine in the caudate and increased axial diffusivity in the pedunculopontine nucleus incurred independent risk of postural instability and gait difficulties. Binary logistic regression and receiver operating characteristics analysis in 117 participants with complete follow-up data at 60 months revealed that only pedunculopontine nucleus microstructure provided more accurate discriminative ability for predicting future postural instability and gait difficulties than clinical and demographic variables alone. Conclusion Dopaminergic and cholinergic loss incur independent risk for future postural instability and gait difficulties, and pedunculopontine nucleus microstructure can be used to prognosticate these symptoms from early Parkinson's disease stages. (c) 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.eng
dc.description.sponsorshipMichael J. Fox Foundation for Parkinson's Research
dc.description.sponsorshipWellcome TrustWellcome Trust
dc.language.isoeng
dc.publisherWILEYeng
dc.relation.ispartofMovement Disorders
dc.rightsopenAccesseng
dc.subjectParkinson's diseaseeng
dc.subjectPedunculopontine nucleuseng
dc.subjectPostural instability and gait difficultieseng
dc.subjectprognostic markerseng
dc.subject.otherbasal forebrain atrophyeng
dc.subject.othercognitive declineeng
dc.subject.otherriskeng
dc.subject.otherprogressioneng
dc.subject.otherdifficultyeng
dc.subject.otherattentioneng
dc.subject.otheratlaseng
dc.subject.otherfallseng
dc.titlePedunculopontine Nucleus Microstructure Predicts Postural and Gait Symptoms in Parkinson's Diseaseeng
dc.typearticleeng
dc.rights.holderCopyright WILEYeng
dc.identifier.doi10.1002/mds.28051
dc.identifier.pmid32400071
dc.subject.wosClinical Neurologyeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
hcfmusp.author.externalCRAIG, Chesney E.:Manchester Metropolitan Univ, Dept Psychol, Hlth Psychol & Communities Res Ctr, Manchester, Lancs, England
hcfmusp.author.externalJENKINSON, Ned J.:Univ Birmingham, Sch Sport Exercise & Rehabil Sci, Birmingham, W Midlands, England; Univ Birmingham, Ctr Human Brain Hlth, Birmingham, W Midlands, England
hcfmusp.author.externalBRITTAIN, John-Stuart:Univ Birmingham, Behav Brain Sci Ctr, Sch Psychol, Birmingham, W Midlands, England
hcfmusp.author.externalGROTHE, Michel J.:German Ctr Neurodegenerat Dis, Rostock, Germany; Univ Seville, Virgen Rocio Univ Hosp, Seville Inst Biomed, Movement Disorder Unit,Neurol & Neurophysiol Serv, Seville, Spain
hcfmusp.author.externalROCHESTER, Lynn:Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne, Tyne & Wear, England
hcfmusp.author.externalSILVERDALE, Monty:Univ Manchester, Salford Royal NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Dept Neurol, Manchester, Lancs, England
hcfmusp.author.externalHOLMES, Paul S.:Manchester Metropolitan Univ, Dept Psychol, Hlth Psychol & Communities Res Ctr, Manchester, Lancs, England
hcfmusp.author.externalRAY, Nicola J.:Manchester Metropolitan Univ, Dept Psychol, Hlth Psychol & Communities Res Ctr, Manchester, Lancs, England
hcfmusp.description.beginpage1199
hcfmusp.description.endpage1207
hcfmusp.description.issue7
hcfmusp.description.volume35
hcfmusp.origemWOS
hcfmusp.origem.idWOS:000531831500001
hcfmusp.origem.id2-s2.0-85084478285
hcfmusp.publisher.cityHOBOKENeng
hcfmusp.publisher.countryUSAeng
hcfmusp.relation.referenceAlho ATDL, 2017, BRAIN STRUCT FUNCT, V222, P2547, DOI 10.1007/s00429-016-1356-0eng
hcfmusp.relation.referenceAllcock LM, 2009, PARKINSONISM RELAT D, V15, P110, DOI 10.1016/j.parkreldis.2008.03.010eng
hcfmusp.relation.referenceAmboni M, 2008, MOVEMENT DISORD, V23, P395, DOI 10.1002/mds.21850eng
hcfmusp.relation.referenceAshburner J, 1999, HUM BRAIN MAPP, V7, P254, DOI 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-Geng
hcfmusp.relation.referenceAvants BB, 2008, MED IMAGE ANAL, V12, P26, DOI 10.1016/j.media.2007.06.004eng
hcfmusp.relation.referenceBackstrom D, 2018, NEUROLOGY, V91, pE2045, DOI 10.1212/WNL.0000000000006576eng
hcfmusp.relation.referenceBohnen NI, 2019, ANN NEUROL, V85, P538, DOI 10.1002/ana.25430eng
hcfmusp.relation.referenceBohnen NI, 2013, NEUROLOGY, V81, P1611, DOI 10.1212/WNL.0b013e3182a9f558eng
hcfmusp.relation.referenceBurn DJ, 2006, J NEUROL NEUROSUR PS, V77, P585, DOI 10.1136/jnnp.2005.081711eng
hcfmusp.relation.referenceDELONG ER, 1988, BIOMETRICS, V44, P837, DOI 10.2307/2531595eng
hcfmusp.relation.referenceFling BW, 2013, BRAIN, V136, P2405, DOI 10.1093/brain/awt172eng
hcfmusp.relation.referenceFraix V, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083919eng
hcfmusp.relation.referenceGrabli D, 2013, J NEUROSCI, V33, P11986, DOI 10.1523/JNEUROSCI.1568-13.2013eng
hcfmusp.relation.referenceHeinsen H, 2000, J CHEM NEUROANAT, V20, P49, DOI 10.1016/S0891-0618(00)00067-3eng
hcfmusp.relation.referenceHiorth YH, 2017, J NEUROL, V264, P364, DOI 10.1007/s00415-016-8365-zeng
hcfmusp.relation.referenceJenkinson N, 2009, MOVEMENT DISORD, V24, P319, DOI 10.1002/mds.22189eng
hcfmusp.relation.referenceKang JH, 2013, JAMA NEUROL, V70, P1277, DOI 10.1001/jamaneurol.2013.3861eng
hcfmusp.relation.referenceKarachi C, 2010, J CLIN INVEST, V120, P2745, DOI 10.1172/JCI42642eng
hcfmusp.relation.referenceKilimann I, 2014, J ALZHEIMERS DIS, V40, P687, DOI 10.3233/JAD-132345eng
hcfmusp.relation.referenceKim R, 2019, NEUROLOGY, V92, pE40, DOI 10.1212/WNL.0000000000006692eng
hcfmusp.relation.referenceKollensperger M, 2008, MOVEMENT DISORD, V23, P1093, DOI 10.1002/mds.21992eng
hcfmusp.relation.referenceLau B, 2015, BRAIN, V138, P1284, DOI 10.1093/brain/awv047eng
hcfmusp.relation.referenceMAZZIOTTA JC, 1995, NEUROIMAGE, V2, P89, DOI 10.1006/nimg.1995.1012eng
hcfmusp.relation.referenceMirelman A, 2016, LANCET, V388, P1170, DOI 10.1016/S0140-6736(16)31325-3eng
hcfmusp.relation.referenceMorris R, 2017, J GERONTOL A-BIOL, V72, P1656, DOI 10.1093/gerona/glx071eng
hcfmusp.relation.referenceMuller MLTM, 2013, MOVEMENT DISORD, V28, P296, DOI 10.1002/mds.25213eng
hcfmusp.relation.referenceMuhlert N, 2013, J MAGN RESON IMAGING, V38, P54, DOI 10.1002/jmri.23970eng
hcfmusp.relation.referencePost B, 2007, MOVEMENT DISORD, V22, P1839, DOI 10.1002/mds.21537eng
hcfmusp.relation.referenceRay NJ, 2018, BRAIN, V141, P165, DOI 10.1093/brain/awx310eng
hcfmusp.relation.referenceRobin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77eng
hcfmusp.relation.referenceRochester L, 2017, NEUROLOGY, V88, P1501, DOI 10.1212/WNL.0000000000003840eng
hcfmusp.relation.referenceSchrag A, 2017, LANCET NEUROL, V16, P66, DOI 10.1016/S1474-4422(16)30328-3eng
hcfmusp.relation.referenceSchulz J, 2018, BRAIN, V141, P1501, DOI 10.1093/brain/awy072eng
hcfmusp.relation.referenceStebbins GT, 2013, MOVEMENT DISORD, V28, P668, DOI 10.1002/mds.25383eng
hcfmusp.relation.referenceVaillancourt DE, 2009, NEUROLOGY, V72, P1378, DOI 10.1212/01.wnl.0000340982.01727.6eeng
hcfmusp.relation.referenceYarnall A, 2011, MOVEMENT DISORD, V26, P2496, DOI 10.1002/mds.23932eng
hcfmusp.relation.referenceZrinzo L, 2008, BRAIN, V131, P1588, DOI 10.1093/brain/awn075eng
dc.description.indexMEDLINEeng
dc.identifier.eissn1531-8257
hcfmusp.citation.scopus13-
hcfmusp.scopus.lastupdate2022-07-08-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/Outros
Outros departamentos - FM/Outros


Files in This Item:
File Description SizeFormat 
art_CRAIG_Pedunculopontine_Nucleus_Microstructure_Predicts_Postural_and_Gait_Symptoms_2020.PDFpublishedVersion (English)563.35 kBAdobe PDFThumbnail
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.