Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/4020
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorRIMKUS, Carolina de Medeiros-
dc.contributor.authorJUNQUEIRA, Thiago de Faria-
dc.contributor.authorCALLEGARO, Dagoberto-
dc.contributor.authorOTADUY, Maria Concepcion Garcia-
dc.contributor.authorLEITE, Claudia da Costa-
dc.date.accessioned2014-01-28T22:20:05Z-
dc.date.available2014-01-28T22:20:05Z-
dc.date.issued2013-
dc.identifier.citationCLINICS, v.68, n.8, p.1115-1120, 2013-
dc.identifier.issn1807-5932-
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/4020-
dc.description.abstractOBJECTIVE: The aim of this study was to characterize the microscopic damage to the corpus callosum in relapsing-remitting multiple sclerosis (RRMS) with diffusion tensor imaging and to investigate the correlation of this damage with disability. The diffusion tensor imaging parameters of fractional anisotropy and mean diffusivity provide information about the integrity of cell membranes, offering two more specific indices, namely the axial and radial diffusivities, which are useful for discriminating axon loss from demyelination. METHOD: Brain magnetic resonance imaging exams of 30 relapsing-remitting multiple sclerosis patients and 30 age-and sex-matched healthy controls were acquired in a 3T scanner. The axial diffusivities, radial diffusivities, fractional anisotropy, and mean diffusivity of five segments of the corpus callosum, correlated to the Expanded Disability Status Scale score, were obtained. RESULTS: All corpus callosum segments showed increased radial diffusivities and mean diffusivity, as well as decreased fractional anisotropy, in the relapsing-remitting multiple sclerosis group. The axial diffusivity was increased in the posterior midbody and splenium. The Expanded Disability Status Scale scores correlated more strongly with axial diffusivities and mean diffusivity, with an isolated correlation with radial diffusivities in the posterior midbody of the corpus callosum. There was no significant correlation with lesion loads. CONCLUSION: Neurological dysfunction in relapsing-remitting multiple sclerosis can be influenced by commissural disconnection, and the diffusion indices of diffusion tensor imaging are potential biomarkers of disability that can be assessed during follow-up.-
dc.description.sponsorshipFoundation for Research Support of the State of Sao Paulo (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP)-
dc.language.isoeng-
dc.publisherHOSPITAL CLINICAS, UNIV SAO PAULO-
dc.relation.ispartofClinics-
dc.rightsopenAccess-
dc.subjectMultiple Sclerosis-
dc.subjectMagnetic Resonance Imaging-
dc.subjectDisability-
dc.subjectDiffusion Tensor Imaging-
dc.subject.otheraxonal damage-
dc.subject.otherbrain-
dc.subject.othermri-
dc.subject.otherwhite-
dc.subject.otherms-
dc.subject.otherdemyelination-
dc.subject.otherdegeneration-
dc.subject.otherdysfunction-
dc.subject.othermyelin-
dc.titleSegmented corpus callosum diffusivity correlates with the Expanded Disability Status Scale score in the early stages of relapsing-remitting multiple sclerosis-
dc.typearticle-
dc.rights.holderCopyright HOSPITAL CLINICAS, UNIV SAO PAULO-
dc.identifier.doi10.6061/clinics/2013(08)09-
dc.identifier.pmid24037007-
dc.subject.wosMedicine, General & Internal-
dc.type.categoryoriginal article-
dc.type.versionpublishedVersion-
hcfmusp.description.beginpage1115-
hcfmusp.description.endpage1120-
hcfmusp.description.issue8-
hcfmusp.description.volume68-
hcfmusp.origemWOS-
hcfmusp.origem.id2-s2.0-84884232199-
hcfmusp.origem.idWOS:000324496600009-
hcfmusp.origem.idSCIELO:S1807-59322013000801115-
hcfmusp.publisher.citySAO PAULO-
hcfmusp.publisher.countryBRAZIL-
hcfmusp.relation.referenceABOITIZ F, 1992, BRAIN RES, V598, P154, DOI 10.1016/0006-8993(92)90179-D-
hcfmusp.relation.referenceAlexander AL, 2007, NEUROTHERAPEUTICS, V4, P316, DOI 10.1016/j.nurt.2007.05.011-
hcfmusp.relation.referenceAntulov R, 2011, J NEUROIMAGING, V21, P210, DOI 10.1111/j.1552-6569.2010.00482.x-
hcfmusp.relation.referenceBarazany D, 2009, BRAIN, V132, P1210, DOI 10.1093/brain/awp042-
hcfmusp.relation.referenceCeccarelli A, 2007, J NEUROL, V254, P513, DOI 10.1007/s00415-006-0408-4-
hcfmusp.relation.referenceCiccarelli O, 2001, NEUROLOGY, V56, P926-
hcfmusp.relation.referenceDeLuca GC, 2006, BRAIN, V129, P1507, DOI 10.1093/brain/awl074-
hcfmusp.relation.referenceDe Stefano N, 1999, BRAIN, V122, P1933, DOI 10.1093/brain/122.10.1933-
hcfmusp.relation.referenceEvangelou N, 2000, BRAIN, V123, P1845, DOI 10.1093/brain/123.9.1845-
hcfmusp.relation.referenceFilippi M, 2003, BRAIN, V126, P433, DOI 10.1093/brain/awg038-
hcfmusp.relation.referenceFILIPPI M, 1995, NEUROLOGY, V45, P255-
hcfmusp.relation.referenceHenry RG, 2003, J MAGN RESON IMAGING, V18, P420, DOI 10.1002/jmri.10379-
hcfmusp.relation.referenceHofer S, 2006, NEUROIMAGE, V32, P989, DOI 10.1016/j.neuroimage.2006.05.044-
hcfmusp.relation.referenceKuhlmann T, 2002, BRAIN, V125, P2202, DOI 10.1093/brain/awf235-
hcfmusp.relation.referenceKURTZKE JF, 1983, NEUROLOGY, V33, P1444-
hcfmusp.relation.referenceMesaros S, 2009, HUM BRAIN MAPP, V30, P2656, DOI 10.1002/hbm.20692-
hcfmusp.relation.referenceNagae LM, 2007, AM J NEURORADIOL, V28, P1213, DOI 10.3174/ajnr.A0534-
hcfmusp.relation.referenceNijeholt GJLA, 1998, BRAIN, V121, P687, DOI 10.1093/brain/121.4.687-
hcfmusp.relation.referenceOzturk A, 2010, MULT SCLER J, V16, P166, DOI 10.1177/1352458509353649-
hcfmusp.relation.referencePalmer S, 1999, RADIOLOGY, V210, P149-
hcfmusp.relation.referencePutnam MC, 2008, J NEUROSCI, V28, P2912, DOI 10.1523/JNEUROSCI.2295-07.2008-
hcfmusp.relation.referenceRimkus CdM, 2011, MULT SCLER INT, V2011, P1, DOI 10.1155/2011/304875-
hcfmusp.relation.referenceRocca MA, 2009, HUM BRAIN MAPP, V30, P2412, DOI 10.1002/hbm.20679-
hcfmusp.relation.referenceRodriguez M, 2003, BRAIN, V126, P751, DOI 10.1093/brain/awg070-
hcfmusp.relation.referenceRoosendaal SD, 2009, NEUROIMAGE, V44, P1397, DOI 10.1016/j.neuroimage.2008.10.026-
hcfmusp.relation.referenceSailer M, 2003, BRAIN, V126, P1734, DOI 10.1093/brain/awg175-
hcfmusp.relation.referenceSammler D, 2010, BRAIN, V133, P2643, DOI 10.1093/brain/awq231-
hcfmusp.relation.referenceSong SK, 2003, NEUROIMAGE, V20, P1714, DOI 10.1016/j.neuroimage.2003.07.005-
hcfmusp.relation.referenceSong SK, 2005, NEUROIMAGE, V26, P132, DOI 10.1016/j.neuroimage.2005.01.028-
hcfmusp.relation.referenceWheeler-Kingshott CAM, 2009, MAGN RESON MED, V61, P1255, DOI 10.1002/mrm.21965-
dc.description.indexMEDLINE-
hcfmusp.remissive.sponsorshipFAPESP-
hcfmusp.citation.scopus13-
hcfmusp.scopus.lastupdate2024-03-29-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MDR
Departamento de Radiologia - FM/MDR

Artigos e Materiais de Revistas Científicas - HC/ICHC
Instituto Central - HC/ICHC

Artigos e Materiais de Revistas Científicas - HC/InRad
Instituto de Radiologia - HC/InRad

Artigos e Materiais de Revistas Científicas - LIM/44
LIM/44 - Laboratório de Ressonância Magnética em Neurorradiologia

Artigos e Materiais de Revistas Científicas - LIM/45
LIM/45 - Laboratório de Fisiopatologia Neurocirúrgica


Files in This Item:
File Description SizeFormat 
art_RIMKUS_Segmented_corpus_callosum_diffusivity_correlates_with_the_Expanded_2013.PDFpublishedVersion (English)1.13 MBAdobe PDFThumbnail
View/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.