Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorGOMES, Joao Lucas Penteado-
dc.contributor.authorTOBIAS, Gabriel Cardial-
dc.contributor.authorFERNANDES, Tiago-
dc.contributor.authorSILVEIRA, Andre Casanova-
dc.contributor.authorNEGRAO, Carlos Eduardo-
dc.contributor.authorCHAMMAS, Roger-
dc.contributor.authorBRUM, Patricia Chakur-
dc.contributor.authorOLIVEIRA, Edilamar Menezes-
dc.identifier.citationCANCERS, v.13, n.22, article ID 5728, 19p, 2021-
dc.description.abstractSimple SummaryMuscle wasting is a symptom of the cancer cachexia closely related to the imbalance between protein synthesis and degradation. MyomiRs are small RNA molecules that do not encode proteins and have the function of regulating protein-coding genes, and in this way, myomiRs can regulate the homeostasis of skeletal muscle cells submitted to physiological or pathological stimulus. Aerobic exercise training (AET) is a nonpharmacological adjuvant treatment to prevent cancer cachexia, improving the patient's quality of life. MyomiRs are modulated by cancer and AET, as well. Thus, we propose to investigate the effects promoted by AET on circulating and skeletal muscle myomiRs in cachectic and non-cachectic cancer mice. Exercise is a promising therapy for cancer-associated muscle wasting, revealing the importance to understand the molecular mechanisms involved to preserve muscle mass.We investigated the effects of AET on myomiRs expression in the skeletal muscle and serum of colon cachectic (CT26) and breast non-cachectic (MMTV-PyMT) cancer mice models. Colon cancer decreased microRNA-486 expression, increasing PTEN in tibialis anterior muscle (TA), decreasing the PI3K/mTOR protein pathway, body and muscle wasting, fibers' cross-sectional area and muscle dysfunction, that were not preserved by AET. In contrast, breast cancer decreased those muscle functions, but were preserved by AET. In circulation, the downregulation of microRNA-486 and -206 in colon cancer, and the downregulation of microRNA-486 and upregulation of microRNA-206 expression in breast cancer might be good cancer serum biomarkers. Since the microRNA-206 is skeletal muscle specific, their expression was increased in the TA, serum and tumor in MMTV, suggesting a communication among these three compartments. The AET prevents these effects on microRNA-206, but not on microRNA-486 in MMTV. In conclusion, cancer induced a downregulation of microRNA-486 expression in TA and serum of CT26 and MMTV mice and these effects were not prevented by AET; however, to MMTV, the trained muscle function was preserved, probably sustained by the downregulation of microRNA-206 expression. Serum microRNA-206 is a potential biomarker for colon (decreased) and breast (increased) cancer to monitor the disease evolution and the effects promoted by the AET.eng
dc.description.sponsorshipSao Paulo Research Foundation (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2015/22814-5, 2015/04788-7]-
dc.description.sponsorshipUniversity of Sao Paulo/Provost Office for Research- MicroRNA Research Nucleus (USP/PRP-NAPmiR)-
dc.description.sponsorshipNational Council for Scientific and Technological Development-CNPQConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) [313479/2017-8, 306261/2016-2, 303573/2015-5]-
dc.description.sponsorshipCoordination of Superior Level Staff Improvement-Academic Excellence Program (CAPES-PROEX)-
dc.subjectcolon cancereng
dc.subjectbreast cancereng
dc.subjectmuscle wastingeng
dc.subjectcancer cachexiaeng
dc.subjectCT26 cancer modeleng
dc.subjectMMTV-PyMT miceeng
dc.subjectaerobic exercise trainingeng
dc.subject.othermuscle-specific micrornaseng
dc.titleEffects of Aerobic Exercise Training on MyomiRs Expression in Cachectic and Non-Cachectic Cancer Miceeng
dc.rights.holderCopyright MDPIeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng, Joao Lucas Penteado:Univ Sao Paulo, Sch Phys Educ & Sport, BR-05508030 Sao Paulo, Brazil-, Gabriel Cardial:Univ Sao Paulo, Sch Phys Educ & Sport, BR-05508030 Sao Paulo, Brazil-, Tiago:Univ Sao Paulo, Sch Phys Educ & Sport, BR-05508030 Sao Paulo, Brazil-, Andre Casanova:Univ Sao Paulo, Sch Phys Educ & Sport, BR-05508030 Sao Paulo, Brazil-, Patricia Chakur:Univ Sao Paulo, Sch Phys Educ & Sport, BR-05508030 Sao Paulo, Brazil-, Edilamar Menezes:Univ Sao Paulo, Sch Phys Educ & Sport, BR-05508030 Sao Paulo, Brazil-
hcfmusp.relation.referenceAbreu P, 2020, J CACHEXIA SARCOPENI, V11, P1661, DOI 10.1002/jcsm.12601eng
hcfmusp.relation.referenceAlexander MS, 2014, J CLIN INVEST, V124, P2651, DOI 10.1172/JCI73579eng
hcfmusp.relation.referenceAmbros V, 2001, CELL, V107, P823, DOI 10.1016/S0092-8674(01)00616-Xeng
hcfmusp.relation.referenceAntunes-Correa LM, 2020, J CACHEXIA SARCOPENI, V11, P89, DOI 10.1002/jcsm.12495eng
hcfmusp.relation.referenceBRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3eng
hcfmusp.relation.referenceBrase JC, 2010, MOL CANCER, V9, DOI 10.1186/1476-4598-9-306eng
hcfmusp.relation.referenceCalzia D, 2020, J CELL PHYSIOL, V235, P3508, DOI 10.1002/jcp.29239eng
hcfmusp.relation.referenceChen DH, 2014, CANCER RES, V74, P4270, DOI 10.1158/0008-5472.CAN-13-2817eng
hcfmusp.relation.referenceChen JF, 2006, NAT GENET, V38, P228, DOI 10.1038/ng1725eng
hcfmusp.relation.referenceChen JF, 2010, J CELL BIOL, V190, P867, DOI 10.1083/jcb.200911036eng
hcfmusp.relation.referenceCunha TF, 2012, J APPL PHYSIOL, V112, P1839, DOI 10.1152/japplphysiol.00346.2011eng
hcfmusp.relation.referenceDiniz GP, 2016, COMPR PHYSIOL, V6, P1279, DOI 10.1002/cphy.c150041eng
hcfmusp.relation.referenceFearon K, 2011, LANCET ONCOL, V12, P489, DOI 10.1016/S1470-2045(10)70218-7eng
hcfmusp.relation.referenceFernandes T, 2015, AM J PHYSIOL-HEART C, V309, pH543, DOI 10.1152/ajpheart.00899.2014eng
hcfmusp.relation.referenceFernandes T, 2012, HYPERTENSION, V59, P513, DOI 10.1161/HYPERTENSIONAHA.111.185801eng
hcfmusp.relation.referenceFerreira JCB, 2007, CLIN EXP PHARMACOL P, V34, P760, DOI 10.1111/j.1440-1681.2007.04635.xeng
hcfmusp.relation.referenceGroarke JD, 2019, EUR HEART J, V40, pE17, DOI 10.1093/eurheartj/eht424eng
hcfmusp.relation.referenceHorak M, 2016, DEV BIOL, V410, P1, DOI 10.1016/j.ydbio.2015.12.013eng
hcfmusp.relation.referenceHu J, 2014, J NEUROCHEM, V129, P877, DOI 10.1111/jnc.12662eng
hcfmusp.relation.referenceKodama S, 2009, JAMA-J AM MED ASSOC, V301, P2024, DOI 10.1001/jama.2009.681eng
hcfmusp.relation.referenceKondo N, 2008, CANCER RES, V68, P5004, DOI 10.1158/0008-5472.CAN-08-0180eng
hcfmusp.relation.referenceLee DE, 2017, PHYSIOL GENOMICS, V49, P253, DOI 10.1152/physiolgenomics.00006.2017eng
hcfmusp.relation.referenceMa J, 2012, TUMOR BIOL, V33, P1983, DOI 10.1007/s13277-012-0458-4eng
hcfmusp.relation.referenceMartin A, 2021, J CACHEXIA SARCOPENI, V12, P252, DOI 10.1002/jcsm.12678eng
hcfmusp.relation.referenceMcCarthy JJ, 2008, BBA-GENE REGUL MECH, V1779, P682, DOI 10.1016/j.bbagrm.2008.03.001eng
hcfmusp.relation.referenceNarasimhan A, 2017, J CACHEXIA SARCOPENI, V8, P405, DOI 10.1002/jcsm.12168eng
hcfmusp.relation.referenceNeil-Sztramko SE, 2014, J PHYSIOTHER, V60, P189, DOI 10.1016/j.jphys.2014.09.005eng
hcfmusp.relation.referenceGomes JLP, 2017, OXID MED CELL LONGEV, V2017, DOI 10.1155/2017/2415246eng
hcfmusp.relation.referenceAlves CRR, 2015, LIFE SCI, V125, P9, DOI 10.1016/j.lfs.2014.11.029eng
hcfmusp.relation.referenceSandri M, 2016, SEMIN CELL DEV BIOL, V54, P11, DOI 10.1016/j.semcdb.2015.11.002eng
hcfmusp.relation.referenceSiracusa J, 2018, J CACHEXIA SARCOPENI, V9, P20, DOI 10.1002/jcsm.12227eng
hcfmusp.relation.referenceSmall EM, 2010, P NATL ACAD SCI USA, V107, P4218, DOI 10.1073/pnas.1000300107eng
hcfmusp.relation.referenceSouza RWA, 2015, AM J PHYSIOL-HEART C, V309, pH1629, DOI 10.1152/ajpheart.00941.2014eng
hcfmusp.relation.referenceToiyama Y, 2018, BBA-REV CANCER, V1870, P274, DOI 10.1016/j.bbcan.2018.05.006eng
hcfmusp.relation.referenceWang Y, 2020, CANCER MANAG RES, V12, P10985, DOI 10.2147/CMAR.S269978eng
hcfmusp.relation.referenceWu HY, 2020, CELL CYCLE, V19, P39, DOI 10.1080/15384101.2019.1691787eng
hcfmusp.relation.referenceXing HX, 2016, MOL MED REP, V14, P1357, DOI 10.3892/mmr.2016.5369eng
hcfmusp.relation.referenceYan BA, 2013, J EXP BIOL, V216, P1265, DOI 10.1242/jeb.079590eng
hcfmusp.relation.referenceZAMMIT VA, 1976, BIOCHEM J, V160, P447, DOI 10.1042/bj1600447eng
hcfmusp.relation.referenceZhang YJ, 2015, INT J CLIN EXP MED, V8, P9107eng
hcfmusp.relation.referenceZhou J, 2013, BIOCHEM BIOPH RES CO, V433, P207, DOI 10.1016/j.bbrc.2013.02.084eng
hcfmusp.relation.referenceZhou Y, 2019, TECHNOL CANCER RES T, V18, DOI 10.1177/1533033819875168eng
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MDR
Departamento de Radiologia - FM/MDR

Artigos e Materiais de Revistas Científicas - HC/InCor
Instituto do Coração - HC/InCor

Artigos e Materiais de Revistas Científicas - LIM/24
LIM/24 - Laboratório de Oncologia Experimental

Files in This Item:
File Description SizeFormat 
art_GOMES_Effects_of_Aerobic_Exercise_Training_on_MyomiRs_Expression_2021.PDFpublishedVersion (English)27.08 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.