Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/45864
Title: Precocious sexual maturation: Unravelling the mechanisms of pubertal onset through clinical observations
Authors: SORIANO-GUILLEN, LeandroTENA-SEMPERE, ManuelSERAPHIM, Carlos E.LATRONICO, Ana C.ARGENTE, Jesus
Citation: JOURNAL OF NEUROENDOCRINOLOGY, v.34, n.2, Special Issue, article ID e12979, 11p, 2022
Abstract: Puberty is a crucial biological process normally occurring at a specific time during the lifespan, during which sexual and somatic maturation are completed, and reproductive capacity is reached. Pubertal timing is not only determined by genetics, but also by endogenous and environmental cues, including nutritional and metabolic signals. During the last decade, we have learned much regarding the essential roles of kisspeptins and the neuropeptide pathways that converge on these neurones to modulate kisspeptin signalling, as well as neurokinin B and dynorphin, the co-transmitters of Kiss1 neurones in the arcuate nucleus, and the effects of melanocortins on puberty. Indeed, melanocortins are involved in transmitting the regulatory actions of metabolic cues on pubertal maturation. Intracellular metabolic sensors, such as the AMP-activated protein kinase and the fuel-sensing deacetylase SIRT1, have been shown to contribute to puberty. Further understanding of these signals and regulatory circuits will help uncover the intimacies of the central control of puberty, as well as how alterations in metabolic status, ranging from undernutrition to obesity, affect the pubertal process. Precocious puberty is rare and has a clear female predominance. Central precocious puberty (CPP) is diagnosed when premature activation of the hypothalamic-pituitary axis occurs. Its causes are heterogeneous, with alterations of the central nervous system being of special interest, and with environmental factors also playing a role in some cases. During the last decade, several mutations in different genes (including KISS1, KISS1R, MKRN3 and DLK1) that cause CPP have been discovered. Loss-of-function mutations in MKRN3 are the most common monogenic cause of CPP known to date. Here, we review and update what is known regarding the genotype-phenotype relationship in patients with CPP.
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MCM
Departamento de Clínica Médica - FM/MCM

Artigos e Materiais de Revistas Científicas - HC/ICHC
Instituto Central - HC/ICHC

Artigos e Materiais de Revistas Científicas - LIM/42
LIM/42 - Laboratório de Hormônios e Genética Molecular


Files in This Item:
File Description SizeFormat 
art_SORIANO-GUILLEN_Precocious_sexual_maturation_Unravelling_the_mechanisms_of_pubertal_2022.PDF
  Restricted Access
publishedVersion (English)847.56 kBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.