Please use this identifier to cite or link to this item: https://observatorio.fm.usp.br/handle/OPI/45962
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorMATTOS, Gabriel J.-
dc.contributor.authorMARCHEAFAVE, Gustavo G.-
dc.contributor.authorROLDAN, William H.-
dc.contributor.authorMATTOS, Miguel J.-
dc.contributor.authorPAULA, Fabiana M. de-
dc.contributor.authorGRYSCHEK, Ronaldo C. B.-
dc.contributor.authorSARTORI, Elen R.-
dc.date.accessioned2022-04-19T12:59:34Z-
dc.date.available2022-04-19T12:59:34Z-
dc.date.issued2022-
dc.identifier.citationSENSORS AND ACTUATORS B-CHEMICAL, v.354, article ID 131213, 9p, 2022-
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/45962-
dc.description.abstractStrongyloidiasis is a tropical disease caused by the nematode called Strongyloides stercoralis. An electrochemical immunosensor was efficiently constructed for the diagnosis of this helminthiasis using the larvae epicuticle as the antigen electrostatically immobilized on the surface of a screen-printed electrode, modified with graphene/ ZnOQDs composite. The mechanism of monitoring was based on the changes in the electrochemical parameters of the device due to the antigen-antibody binding on its interface. The immunosensor was characterized using electrochemical impedance spectroscopy and cyclic voltammetry, evaluating the impedimetric/voltammetric biorecognition of the antigen-antibody complex using the redox group K4Fe(CN)6 as the electrochemical probe. This bioelectronic device detected antibodies in positive serum samples based on the voltammetric profile and electrochemical impedance monitoring. Partial least squares-discriminant analysis showed a coefficient of determination of 0.98, indicating that the model can correctly classify samples as positive or negative for strongyloidiasis, based on the voltammetric profile of samples from immunocompetent patients. The analysis of the root mean square error of cross-validation (0.126), the root mean square error of calibration (0.124), and the root mean square error of prediction (0.100) for the latent variable indicate the optimal precision of the model. Based on the receiver operating characteristic curves, the cutoff was determined for the electrochemical impedance measurements, obtaining a 100% correct classification for immunocompetent patients and just 1.25% false-negatives in cases of immunosuppressed patients. The immunosensor presented excellent specificity in the presence of other helminthiases, including ascaridiasis, diphyllobothriasis, himenolepiasis, cysticercosis, and trichuriasis.eng
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) [408591/2018-8, 305320/2019-0]-
dc.description.sponsorshipCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)-
dc.description.sponsorshipUniversidade Estadual de Londrina, Hospital das Clinicas - Faculdade de Medicina Universidade de Sao Paulo-
dc.description.sponsorshipInstituto de Medicina Tropical de Sao Paulo-
dc.language.isoeng-
dc.publisherELSEVIER SCIENCE SAeng
dc.relation.ispartofSensors and Actuators B-Chemical-
dc.rightsrestrictedAccesseng
dc.subjectElectrochemical immunosensoreng
dc.subjectElectrochemical impedance spectroscopyeng
dc.subjectHealthcareeng
dc.subjectImmunoassayseng
dc.subjectPrediction modeleng
dc.subjectTropical diseaseseng
dc.subject.otherscreen-printed electrodeseng
dc.subject.otherpartial least-squareseng
dc.subject.otherreduced grapheneeng
dc.subject.otherimmunosensoreng
dc.subject.otherbiosensoreng
dc.subject.otherserodiagnosiseng
dc.subject.otherelisaeng
dc.titleSerological diagnosis of strongyloidiasis in immunocompetent and immunosuppressed patients based on an electrochemical immunoassay using a flexible device allied to PLS-DA and ROC statistical toolseng
dc.typearticleeng
dc.rights.holderCopyright ELSEVIER SCIENCE SAeng
dc.identifier.doi10.1016/j.snb.2021.131213-
dc.subject.wosChemistry, Analyticaleng
dc.subject.wosElectrochemistryeng
dc.subject.wosInstruments & Instrumentationeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
hcfmusp.author.externalMATTOS, Gabriel J.:Univ Estadual Londrina, Dept Quim, Ctr Ciencias Exatas, Rodovia Celso Garcia Cid,PR 445,Km 380,CxP 100011, BR-86057970 Londrina, PR, Brazil-
hcfmusp.author.externalMARCHEAFAVE, Gustavo G.:Univ Estadual Londrina, Dept Quim, Ctr Ciencias Exatas, Rodovia Celso Garcia Cid,PR 445,Km 380,CxP 100011, BR-86057970 Londrina, PR, Brazil-
hcfmusp.author.externalMATTOS, Miguel J.:Univ Tecnol Fed Parana, Dept Engnh Mat, BR-86036370 Londrina, PR, Brazil-
hcfmusp.author.externalSARTORI, Elen R.:Univ Estadual Londrina, Dept Quim, Ctr Ciencias Exatas, Rodovia Celso Garcia Cid,PR 445,Km 380,CxP 100011, BR-86057970 Londrina, PR, Brazil-
hcfmusp.description.articlenumber131213-
hcfmusp.description.volume354-
hcfmusp.origemWOS-
hcfmusp.origem.idWOS:000752498400007-
hcfmusp.origem.id2-s2.0-85121133356-
hcfmusp.publisher.cityLAUSANNEeng
hcfmusp.publisher.countrySWITZERLANDeng
hcfmusp.relation.referenceArenas CB, 2016, SENSOR ACTUAT B-CHEM, V223, P89, DOI 10.1016/j.snb.2015.09.055eng
hcfmusp.relation.referenceBrereton RG, 2014, J CHEMOMETR, V28, P213, DOI 10.1002/cem.2609eng
hcfmusp.relation.referenceChen Y, 2019, BIOSENS BIOELECTRON, V132, P294, DOI 10.1016/j.bios.2019.02.057eng
hcfmusp.relation.referenceChen Y, 2019, BIOSENS BIOELECTRON, V126, P187, DOI 10.1016/j.bios.2018.10.057eng
hcfmusp.relation.referenceCinti S, 2015, ELECTROANAL, V27, P2230, DOI 10.1002/elan.201500168eng
hcfmusp.relation.referenceCordeiro TAR, 2021, TALANTA, V234, DOI 10.1016/j.talanta.2021.122617eng
hcfmusp.relation.referenceDAFALLA AA, 1972, J TROP MED HYG, V75, P109eng
hcfmusp.relation.referencede Almeida SV, 2020, MICROCHIM ACTA, V187, DOI 10.1007/s00604-020-04420-6eng
hcfmusp.relation.referencede Oliveira VMAT, 2020, ANAL METHODS-UK, V12, P701, DOI 10.1039/c9ay02025jeng
hcfmusp.relation.referenceDreyer G, 1996, J CLIN MICROBIOL, V34, P2569, DOI 10.1128/JCM.34.10.2569-2571.1996eng
hcfmusp.relation.referenceEsposito F, 2021, SENSOR ACTUAT B-CHEM, V347, DOI 10.1016/j.snb.2021.130637eng
hcfmusp.relation.referenceEsposito F, 2021, IEEE SENS J, V21, P12692, DOI 10.1109/JSEN.2020.3025488eng
hcfmusp.relation.referenceFabiani L, 2021, BIOSENS BIOELECTRON, V171, DOI 10.1016/j.bios.2020.112686eng
hcfmusp.relation.referenceFarghaly OA, 2014, INT J ELECTROCHEM SC, V9, P3287eng
hcfmusp.relation.referenceGENTA RM, 1988, AM J CLIN PATHOL, V89, P391, DOI 10.1093/ajcp/89.3.391eng
hcfmusp.relation.referenceGolomski W.A., 2006, ENCYCL STAT SCI, V11, P137, DOI [10.1002/0471667196.ess0035.pub2, DOI 10.1002/0471667196.ESS0035.PUB2]eng
hcfmusp.relation.referenceGromski PS, 2015, ANAL CHIM ACTA, V879, P10, DOI 10.1016/j.aca.2015.02.012eng
hcfmusp.relation.referenceKang J, 2021, BIOELECTROCHEMISTRY, V137, DOI 10.1016/j.bioelechem.2020.107647eng
hcfmusp.relation.referenceKostelnik A, 2020, INT J ELECTROCHEM SC, V15, P5154, DOI 10.20964/2020.06.36eng
hcfmusp.relation.referenceKurbanoglu S, 2017, BIOSENS BIOELECTRON, V88, P122, DOI 10.1016/j.bios.2016.07.109eng
hcfmusp.relation.referenceLi M, 2017, CURR OPIN ELECTROCHE, V3, P137, DOI 10.1016/j.coelec.2017.08.016eng
hcfmusp.relation.referenceMelo FCC, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21061931eng
hcfmusp.relation.referenceMincu NB, 2020, DIAGNOSTICS, V10, DOI 10.3390/diagnostics10080517eng
hcfmusp.relation.referenceNesakumar N, 2016, BIOSENS BIOELECTRON, V77, P1070, DOI 10.1016/j.bios.2015.11.010eng
hcfmusp.relation.referenceObuchowski NA, 2018, PHYS MED BIOL, V63, P1, DOI 10.1088/1361-6560/aab4b1eng
hcfmusp.relation.referenceOdundo J, 2018, S AFR J CHEM-S-AFR T, V71, P127, DOI 10.17159/0379-4350/2018/v71a16eng
hcfmusp.relation.referencePRITCHARD DI, 1985, PARASITE IMMUNOL, V7, P575, DOI 10.1111/j.1365-3024.1985.tb00101.xeng
hcfmusp.relation.referenceProdromidis MI, 2010, ELECTROCHIM ACTA, V55, P4227, DOI 10.1016/j.electacta.2009.01.081eng
hcfmusp.relation.referenceRequena-Mendez A, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002002eng
hcfmusp.relation.referenceSATO Y, 1991, T ROY SOC TROP MED H, V85, P515, DOI 10.1016/0035-9203(91)90240-Yeng
hcfmusp.relation.referenceShohayeb M, 2016, INT J ELECTROCHEM SC, V11, P1337eng
hcfmusp.relation.referenceStankovic DM, 2021, DIAM RELAT MATER, V113, DOI 10.1016/j.diamond.2021.108277eng
hcfmusp.relation.referenceSzymanska E, 2012, METABOLOMICS, V8, pS3, DOI 10.1007/s11306-011-0330-3eng
hcfmusp.relation.referenceTormena CD, 2019, ENVIRON SCI POLLUT R, V26, P30356, DOI 10.1007/s11356-019-06163-1eng
hcfmusp.relation.referenceTorre R, 2020, BIOSENSORS-BASEL, V10, DOI 10.3390/bios10100139eng
hcfmusp.relation.referenceVerma S, 2019, MRS COMMUN, V9, P1227, DOI 10.1557/mrc.2019.138eng
hcfmusp.relation.referenceWang X, 2015, SENSOR ACTUAT B-CHEM, V206, P30, DOI 10.1016/j.snb.2014.09.028eng
hcfmusp.relation.referenceWHO, 2016, STRONG WHOeng
dc.description.indexPubMedeng
dc.identifier.eissn0925-4005-
hcfmusp.citation.scopus0-
hcfmusp.scopus.lastupdate2022-09-15-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MIP
Departamento de Moléstias Infecciosas e Parasitárias - FM/MIP

Artigos e Materiais de Revistas Científicas - LIM/06
LIM/06 - Laboratório de Imunopatologia da Esquistossomose e outras Parasitoses


Files in This Item:
File Description SizeFormat 
art_MATTOS_Serological_diagnosis_of_strongyloidiasis_in_immunocompetent_and_immunosuppressed_2022.PDF
  Restricted Access
publishedVersion (English)2.64 MBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.