Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorFERNANDES, Marcos V. S.
dc.contributor.authorROCHA, Nazareth N.
dc.contributor.authorFELIX, Nathane S.
dc.contributor.authorRODRIGUES, Gisele C.
dc.contributor.authorSILVA, Luisa H. A.
dc.contributor.authorCOELHO, Mariana S.
dc.contributor.authorFONSECA, Ana Carolina F.
dc.contributor.authorTEIXEIRA, Ana Carolina G. M.
dc.contributor.authorCAPELOZZI, Vera L.
dc.contributor.authorPELOSI, Paolo
dc.contributor.authorSILVA, Pedro L.
dc.contributor.authorMARINI, John J.
dc.contributor.authorROCCO, Patricia R. M.
dc.identifier.citationJOURNAL OF APPLIED PHYSIOLOGY, v.132, n.2, p.375-387, 2022
dc.description.abstractIncreases in positive end-expiratory pressure (PEEP) or recruitment maneuvers may increase stress in lung parenchyma, extracellular matrix, and lung vessels; however, adaptative responses may occur. We evaluated the effects of PEEP on lung damage and cardiac function when increased abruptly, gradually, or more gradually in experimental mild/moderate acute respiratory distress syndrome (ARDS) induced by Escherichia coli lipopolysaccharide intratracheally. After 24 h, Wistar rats (n = 48) were randomly assigned to four mechanical ventilation strategies according to PEEP levels: 1) 3 cmH(2)O for 2 h (control); 2) 3 cmH(2)O for 1 h followed by an abrupt increase to 9 cmH(2)O for 1 h (no adaptation time); 3) 3 cmH(2)O for 30 min followed by a gradual increase to 9 cmH(2)O over 30 min then kept constant for 1 h (shorter adaptation time); and 4) more gradual increase in PEEP from 3 cmH(2)O to 9 cmH(2)O over 1 h and kept constant thereafter (longer adaptation time). At the end of the experiment, oxygenation improved in the shorter and longer adaptation time groups compared with the no-adaptation and control groups. Diffuse alveolar damage and expressions of interleukin-6, club cell protein-16, vascular cell adhesion molecule-1, amphiregulin, decorin, and syndecan were higher in no adaptation time compared with other groups. Pulmonary arterial pressure was lower in longer adaptation time than in no adaptation (P = 0.002) and shorter adaptation time (P = 0.025) groups. In this model, gradually increasing PEEP limited lung damage and release of biomarkers associated with lung epithelial/endothelial cell and extracellular matrix damage, as well as the PEEP-associated increase in pulmonary arterial pressure. NEW & NOTEWORTHY In a rat model of Escherichia coli lipopolysaccharide-induced mild/moderate acute respiratory distress syndrome, a gradual PEEP increase (shorter adaptation time) effectively mitigated histological lung injury and biomarker release associated with lung inflammation, damage to epithelial cells, endothelial cells, and the extracellular matrix compared with an abrupt increase in PEEP. A more gradual PEEP increase (longer adaptation time) decreased lung damage, pulmonary vessel compression, and pulmonary arterial pressure.eng
dc.description.sponsorshipBrazilian Council for Scientific and Technological Development (CNPq
dc.description.sponsorshipBrasilia, Brazil)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)Fundacao de Apoio a Pesquisa do Distrito Federal (FAPDF)
dc.description.sponsorshipRio de Janeiro State Research Foundation (FAPERJ
dc.description.sponsorshipRio de Janeiro, Brazil)
dc.description.sponsorshipSao Paulo State Research Foundation (FAPESP
dc.description.sponsorshipSAo Paulo, Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
dc.description.sponsorshipCoordination for the Improvement of Higher Education Personnel (CAPES
dc.description.sponsorshipBrasilia, Brazil)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
dc.relation.ispartofJournal of Applied Physiology
dc.subjectacute respiratory distress syndromeeng
dc.subjectdiffuse alveolar damage scoreeng
dc.subjectlung functioneng
dc.subjectmolecular biologyeng
dc.subjectventilator-induced lung injuryeng
dc.titleA more gradual positive end-expiratory pressure increase reduces lung damage and improves cardiac function in experimental acute respiratory distress syndromeeng
dc.rights.holderCopyright AMER PHYSIOLOGICAL SOCeng
dc.subject.wosSport Scienceseng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng, Marcos V. S.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, Nazareth N.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil; Fluminense Fed Univ, Biomed Inst, Dept Physiol & Pharmacol, Niteroi, RJ, Brazil, Nathane S.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, Gisele C.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, Luisa H. A.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, Mariana S.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, Ana Carolina F.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, Ana Carolina G. M.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, Paolo:Univ Genoa, Dept Surg Sci & Integrated Diagnost, Genoa, Italy; IRCCS Oncol & Neurosci, San Martino Policlin Hosp, Genoa, Italy, Pedro L.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil, John J.:Reg Hosp, Minneapolis, MN USA; Univ Minnesota, Minneapolis, MN USA, Patricia R. M.:Univ Fed Rio de Janeiro, Carlos Chagas Filho Biophys Inst, Lab Pulm Invest, Rio De Janeiro, Brazil
hcfmusp.publisher.countryUNITED STATESeng
hcfmusp.relation.referenceAkamine R, 2007, J BIOCHEM BIOPH METH, V70, P481, DOI 10.1016/j.jbbm.2006.11.008eng
hcfmusp.relation.referenceBerger D, 2016, AM J PHYSIOL-HEART C, V311, pH794, DOI 10.1152/ajpheart.00931.2015eng
hcfmusp.relation.referenceBrauer R, 2016, AM J RESP CRIT CARE, V194, P333, DOI 10.1164/rccm.201509-1878OCeng
hcfmusp.relation.referenceCook-Mills JM, 2011, ANTIOXID REDOX SIGN, V15, P1607, DOI 10.1089/ars.2010.3522eng
hcfmusp.relation.referenceDolinay T, 2006, PHYSIOL GENOMICS, V26, P68, DOI 10.1152/physiolgenomics.00110.2005eng
hcfmusp.relation.referencedu Sert NP, 2020, PLOS BIOL, V18, DOI 10.1371/journal.pbio.3000410eng
hcfmusp.relation.referenceFelix NS, 2019, ANESTHESIOLOGY, V130, P767, DOI 10.1097/ALN.0000000000002630eng
hcfmusp.relation.referenceGonzalez-Lopez A, 2011, AM J PHYSIOL-LUNG C, V301, pL500, DOI 10.1152/ajplung.00010.2011eng
hcfmusp.relation.referenceGrune J, 2019, INTENS CARE MED EXP, V7, DOI 10.1186/s40635-019-0226-5eng
hcfmusp.relation.referenceHuh D, 2007, P NATL ACAD SCI USA, V104, P18886, DOI 10.1073/pnas.0610868104eng
hcfmusp.relation.referenceKropski JA, 2009, CHEST, V135, P1440, DOI 10.1378/chest.08-2465eng
hcfmusp.relation.referenceLang RM, 2015, J AM SOC ECHOCARDIOG, V28, P1, DOI 10.1016/j.echo.2014.10.003eng
hcfmusp.relation.referenceLim SC, 2004, CRIT CARE MED, V32, P2371, DOI 10.1097/01.CCM.0000147445.73344.3Aeng
hcfmusp.relation.referenceLuecke T, 2005, CRIT CARE, V9, P607, DOI 10.1186/cc3877eng
hcfmusp.relation.referenceMarini JJ, 2020, CRIT CARE MED, V48, P1203, DOI 10.1097/CCM.0000000000004416eng
hcfmusp.relation.referenceMarini JJ, 2019, CRIT CARE, V23, DOI 10.1186/s13054-019-2406-9eng
hcfmusp.relation.referenceMatute-Bello G, 2011, AM J RESP CELL MOL, V44, P725, DOI 10.1165/rcmb.2009-0210STeng
hcfmusp.relation.referenceMORTOLA JP, 1983, J APPL PHYSIOL, V55, P250, DOI 10.1152/jappl.1983.55.1.250eng
hcfmusp.relation.referenceGarcia CSNB, 2008, CRIT CARE MED, V36, P232, DOI 10.1097/01.CCM.0000295309.69123.AEeng
hcfmusp.relation.referencePatel S, 1998, J BIOL CHEM, V273, P3121, DOI 10.1074/jbc.273.6.3121eng
hcfmusp.relation.referencePaula LF, 2016, J APPL PHYSIOL, V121, P1335, DOI 10.1152/japplphysiol.00861.2015eng
hcfmusp.relation.referencePinto EF, 2020, ANESTHESIOLOGY, V132, P307, DOI 10.1097/ALN.0000000000003060eng
hcfmusp.relation.referenceProtti A, 2016, CRIT CARE MED, V44, pE838, DOI 10.1097/CCM.0000000000001718eng
hcfmusp.relation.referenceSamary CS, 2015, ANESTHESIOLOGY, V123, P423, DOI 10.1097/ALN.0000000000000716eng
hcfmusp.relation.referenceSantos RS, 2018, ANESTHESIOLOGY, V128, P1193, DOI 10.1097/ALN.0000000000002143eng
hcfmusp.relation.referenceSchmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73eng
hcfmusp.relation.referenceSilva PL, 2013, CRIT CARE MED, V41, pE256, DOI 10.1097/CCM.0b013e31828a3c13eng
hcfmusp.relation.referenceSilva PL, 2011, CRIT CARE MED, V39, P1074, DOI 10.1097/CCM.0b013e318206d69aeng
hcfmusp.relation.referenceUhlig C, 2014, RESP RES, V15, DOI 10.1186/1465-9921-15-56eng
hcfmusp.relation.referenceWallace MJ, 2009, RESP RES, V10, DOI 10.1186/1465-9921-10-19eng
Appears in Collections:

Artigos e Materiais de Revistas Científicas - FM/MPT
Departamento de Patologia - FM/MPT

Artigos e Materiais de Revistas Científicas - LIM/03
LIM/03 - Laboratório de Medicina Laboratorial

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.