Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP-
dc.contributor.authorOGATA, Fernando Toshio-
dc.contributor.authorBATISTA, Wagner Luiz-
dc.contributor.authorSARTORI, Adriano-
dc.contributor.authorGESTEIRA, Tarsis Ferreira-
dc.contributor.authorMASUTANI, Hiroshi-
dc.contributor.authorARAI, Roberto Jun-
dc.contributor.authorYODOI, Junji-
dc.contributor.authorSTERN, Arnold-
dc.contributor.authorMONTEIRO, Hugo Pequeno-
dc.identifier.citationPLOS ONE, v.8, n.12, article ID e84588, 16p, 2013-
dc.description.abstractThioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras - ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through downregulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXN1P). Once activated by the oxidants, SNAP and H2O2, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXN1P. In the presence of the MEK inhibitors (PD98059 or U0126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.-
dc.description.sponsorshipFundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP [07/59617-6, 09/52730-7, 12/10470-1, 06/53791-1, 09/50708-4]-
dc.relation.ispartofPlos One-
dc.subject.otheraortic endothelial-cells-
dc.subject.othernitric-oxide synthase-
dc.subject.otherredox regulation-
dc.subject.othermap kinase-
dc.subject.othertranscriptional activity-
dc.subject.otheroxidative stress-
dc.subject.otherpc12 cells-
dc.titleNitrosative/Oxidative Stress Conditions Regulate Thioredoxin-Interacting Protein (TXNIP) Expression and Thioredoxin-1 (TRX-1) Nuclear Localization-
dc.rights.holderCopyright PUBLIC LIBRARY SCIENCE-
dc.subject.wosMultidisciplinary Sciences-
dc.type.categoryoriginal article-
dc.type.versionpublishedVersion-, Fernando Toshio:Univ Fed Sao Paulo, Dept Bioquim Biol Mol, Sao Paulo, Brazil; Univ Fed Sao Paulo, CTCMol, Ctr Cellular & Mol Therapy, Sao Paulo, Brazil-, Wagner Luiz:Univ Fed Sao Paulo, Dept Ciencias Biol, Sao Paulo, Brazil-, Adriano:Univ Fed Sao Paulo, Dept Bioquim Biol Mol, Sao Paulo, Brazil; Univ Fed Sao Paulo, CTCMol, Ctr Cellular & Mol Therapy, Sao Paulo, Brazil-, Tarsis Ferreira:Univ Fed Sao Paulo, Dept Bioquim Biol Mol, Sao Paulo, Brazil; Univ Fed Sao Paulo, CTCMol, Ctr Cellular & Mol Therapy, Sao Paulo, Brazil-, Hiroshi:Kyoto Univ, Dept Biol Responses, Kyoto, Japan-, Junji:Kyoto Univ, Dept Biol Responses, Kyoto, Japan-, Arnold:NYU, Sch Med, Dept Pharmacol, New York, NY USA-, Hugo Pequeno:Univ Fed Sao Paulo, Dept Bioquim Biol Mol, Sao Paulo, Brazil; Univ Fed Sao Paulo, CTCMol, Ctr Cellular & Mol Therapy, Sao Paulo, Brazil-
hcfmusp.publisher.citySAN FRANCISCO-
hcfmusp.relation.referenceAEBI H, 1984, METHOD ENZYMOL, V105, P121-
hcfmusp.relation.referenceAkamatsu Y, 1997, J BIOL CHEM, V272, P14497, DOI 10.1074/jbc.272.23.14497-
hcfmusp.relation.referenceArai RJ, 2006, BIOCHEM BIOPH RES CO, V348, P1254, DOI 10.1016/j.bbrc.2006.07.178-
hcfmusp.relation.referenceArner ESJ, 2000, EUR J BIOCHEM, V267, P6102, DOI 10.1046/j.1432-1327.2000.01701.x-
hcfmusp.relation.referenceBai J, 2003, J NEUROSCI, V23, P503-
hcfmusp.relation.referenceBatista WL, 2013, ANTIOXID REDOX SIGN, V18, P221, DOI 10.1089/ars.2011.4455-
hcfmusp.relation.referenceBRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999-
hcfmusp.relation.referenceButler LM, 2002, P NATL ACAD SCI USA, V99, P11700, DOI 10.1073/pnas.182372299-
hcfmusp.relation.referenceChen HL, 2005, PROTEINS, V61, P21, DOI 10.1002/prot.20514-
hcfmusp.relation.referenceChen JQ, 2010, DIABETES, V59, P440, DOI 10.2337/db09-0949-
hcfmusp.relation.referenceCHEN KS, 1994, BBA-GENE STRUCT EXPR, V1219, P26, DOI 10.1016/0167-4781(94)90242-9-
hcfmusp.relation.referenceDeora AA, 2000, BIOCHEMISTRY-US, V39, P9901, DOI 10.1021/bi992954b-
hcfmusp.relation.referenceEu JP, 2000, BIOCHEMISTRY-US, V39, P1040, DOI 10.1021/bi992046e-
hcfmusp.relation.referenceFerre F, 2006, NUCLEIC ACIDS RES, V34, pW182, DOI 10.1093/nar/gkl189-
hcfmusp.relation.referenceFLOHE L, 1984, METHOD ENZYMOL, V105, P114-
hcfmusp.relation.referenceFormstecher E, 2001, DEV CELL, V1, P239, DOI 10.1016/S1534-5807(01)00035-1-
hcfmusp.relation.referenceHaling JR, 2010, MOL BIOL CELL, V21, P664, DOI 10.1091/mbc.E09-08-0659-
hcfmusp.relation.referenceHirota K, 1997, P NATL ACAD SCI USA, V94, P3633, DOI 10.1073/pnas.94.8.3633-
hcfmusp.relation.referenceHirota K, 1999, J BIOL CHEM, V274, P27891, DOI 10.1074/jbc.274.39.27891-
hcfmusp.relation.referenceHOLMGREN A, 1985, ANNU REV BIOCHEM, V54, P237, DOI 10.1146/annurev.biochem.54.1.237-
hcfmusp.relation.referenceJunn E, 2000, J IMMUNOL, V164, P6287-
hcfmusp.relation.referenceKaadige MR, 2009, P NATL ACAD SCI USA, V106, P14878, DOI 10.1073/pnas.0901221106-
hcfmusp.relation.referenceLivak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262-
hcfmusp.relation.referenceLiyanage NPM, 2007, EXP EYE RES, V85, P270, DOI 10.1016/j.exer.2007.05.001-
hcfmusp.relation.referenceMasaki S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039900-
hcfmusp.relation.referenceMeuillet EJ, 2004, ARCH BIOCHEM BIOPHYS, V429, P123, DOI 10.1016/
hcfmusp.relation.referenceMinn AH, 2005, ENDOCRINOLOGY, V146, P2397, DOI 10.1210/en.2004-1378-
hcfmusp.relation.referenceMurphy LO, 2006, TRENDS BIOCHEM SCI, V31, P268, DOI 10.1016/j.tibs.2006.03.009-
hcfmusp.relation.referenceNakamura H, 1997, ANNU REV IMMUNOL, V15, P351, DOI 10.1146/annurev.immunol.15.1.351-
hcfmusp.relation.referenceNishinaka Y, 2004, J BIOL CHEM, V279, P37559, DOI 10.1074/jbc.M405473200-
hcfmusp.relation.referenceNishiyama A, 1999, J BIOL CHEM, V274, P21645, DOI 10.1074/jbc.274.31.21645-
hcfmusp.relation.referenceNishizawa K, 2011, CARCINOGENESIS, V32, P1459, DOI 10.1093/carcin/bgr137-
hcfmusp.relation.referenceOliveira CJR, 2008, NITRIC OXIDE-BIOL CH, V18, P241, DOI 10.1016/j.niox.2008.02.001-
hcfmusp.relation.referenceOliveira CJR, 2003, FREE RADICAL BIO MED, V35, P381, DOI 10.1016/S0891-5849(03)00311-3-
hcfmusp.relation.referencePouyssegur J, 2002, BIOCHEM PHARMACOL, V64, P755, DOI 10.1016/S0006-2952(02)01135-8-
hcfmusp.relation.referenceSchonhoff CM, 2001, J NEUROCHEM, V78, P631, DOI 10.1046/j.1471-4159.2001.00432.x-
hcfmusp.relation.referenceSchulze PC, 2004, J BIOL CHEM, V279, P30369, DOI 10.1074/jbc.M400549200-
hcfmusp.relation.referenceSchulze PC, 2006, ARTERIOSCL THROM VAS, V26, P2666, DOI 10.1161/01.ATV.0000248914.21018.f1-
hcfmusp.relation.referenceSchulze PC, 2002, CIRC RES, V91, P689, DOI 10.1161/01.RES.0000037982.55074.F6-
hcfmusp.relation.referenceSheth SS, 2006, ONCOGENE, V25, P3528, DOI 10.1038/sj.onc.1209394-
hcfmusp.relation.referenceStoltzman CA, 2008, P NATL ACAD SCI USA, V105, P6912, DOI 10.1073/pnas.0712199105-
hcfmusp.relation.referenceStoltzman CA, 2011, J BIOL CHEM, V286, P38027, DOI 10.1074/jbc.M111.275503-
hcfmusp.relation.referenceTurturro F, 2007, CLIN CANCER RES, V13, P3724, DOI 10.1158/1078-0432.CCR-07-0244-
hcfmusp.relation.referenceUeno M, 1999, J BIOL CHEM, V274, P35809, DOI 10.1074/jbc.274.50.35809-
hcfmusp.relation.referenceWang YL, 2002, J BIOL CHEM, V277, P26496, DOI 10.1074/jbc.M202133200-
hcfmusp.relation.referenceYu FX, 2009, MOL ENDOCRINOL, V23, P932, DOI 10.1210/me.2008-0383-
hcfmusp.relation.referenceYu L, 2006, BIOTECHNOL PROGR, V22, P1461, DOI 10.1021/bp060102e-
Appears in Collections:

Artigos e Materiais de Revistas Científicas - HC/ICESP
Instituto do Câncer do Estado de São Paulo - HC/ICESP

Files in This Item:
File Description SizeFormat 
art_ARAI_Nitrosative_Oxidative_Stress_Conditions_Regulate_Thioredoxin_Interacting_Protein_2013.PDFpublishedVersion (English)2.09 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.