Sistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSPFERREIRA JUNIOR, Jose RanieryCARDENAS, Diego Armando CardonaMORENO, Ramon AlfredoREBELO, Marina de Fatima de SaKRIEGER, Jose EduardoGUTIERREZ, Marco Antonio2021-08-132021-08-132021JOURNAL OF DIGITAL IMAGING, v.34, n.2, Special Issue, p.297-307, 20210897-1889https://observatorio.fm.usp.br/handle/OPI/41355COVID-19 is a highly contagious disease that can cause severe pneumonia. Patients with pneumonia undergo chest X-rays (XR) to assess infiltrates that identify the infection. However, the radiographic characteristics of COVID-19 are similar to the other acute respiratory syndromes, hindering the imaging diagnosis. In this work, we proposed identifying quantitative/radiomic biomarkers for COVID-19 to support XR assessment of acute respiratory diseases. This retrospective study used different cohorts of 227 patients diagnosed with pneumonia; 49 of them had COVID-19. Automatically segmented images were characterized by 558 quantitative features, including gray-level histogram and matrices of co-occurrence, run-length, size zone, dependence, and neighboring gray-tone difference. Higher-order features were also calculated after applying square and wavelet transforms. Mann-Whitney U test assessed the diagnostic performance of the features, and the log-rank test assessed the prognostic value to predict Kaplan-Meier curves of overall and deterioration-free survival. Statistical analysis identified 51 independently validated radiomic features associated with COVID-19. Most of them were wavelet-transformed features; the highest performance was the small dependence matrix feature of ""low gray-level emphasis"" (area under the curve of 0.87, sensitivity of 0.85, p<0.001). Six features presented short-term prognostic value to predict overall and deterioration-free survival. The features of histogram ""mean absolute deviation"" and size zone matrix ""non-uniformity"" yielded the highest differences on Kaplan-Meier curves with a hazard ratio of 3.20 (p<0.05). The radiomic markers showed potential as quantitative measures correlated with the etiologic agent of acute infectious diseases and to stratify short-term risk of COVID-19 patients.engrestrictedAccessCOVID-19RadiomicsCoronavirusChest radiographyMedical image analysisNovel Chest Radiographic Biomarkers for COVID-19 Using Radiomic Features Associated with Diagnostics and OutcomesarticleCopyright SPRINGER10.1007/s10278-021-00421-wRadiology, Nuclear Medicine & Medical Imaging1618-727X