Sistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSPMONTEIRO, Lis MarieLOBENBERG, RaimarFERREIRA, Elizabeth IgneCOTRIM, Paulo CesarKANASHIRO, EditeROCHA, MussyaCHUNG, Man ChinBOU-CHACRA, Nadia2017-10-242017-10-242017INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, v.50, n.1, p.88-92, 20170924-8579https://observatorio.fm.usp.br/handle/OPI/21920Dextran-coated poly (n-butyl cyanoacrylate) nanoparticles (PBCA-NPs) were prepared and were evaluated for enhanced delivery of a promising anti-Leishmania drug candidate, hydroxymethylnitrofurazone (NFOH), to phagocytic cells. Currently available chemotherapy for leishmaniasis, such as pentavalent antimonials, presents low safety and efficacy. Furthermore, widespread drug resistance in leishmaniasis is rapidly emerging. To overcome these drawbacks, the use of nanosized delivery systems can reduce systemic drug toxicity and increase the drug concentration in infected macrophages, therefore improving treatment of leishmaniasis. PBCA-NPs containing NFOH (PBCA-NFOH-NPs) were prepared by an anionic emulsion polymerisation method. The z-average and polydispersity index (PDI) were determined by photon correlation spectroscopy, the zeta potential by microelectrophoresis and the entrapment efficiency by HPLC. Cytotoxicity was determined using macrophages from BALB/c mice. Efficacy tests were performed using Leishmania amazonensis promastigotes and amastigotes. The z-average of PBCA-NFOH-NPs was 151.5 +/- 61.97 nm, with a PDI of 0.104 +/- 0.01, a zeta potential of -10.1 +/- 6.49 mV and an entrapment efficiency of 64.47 +/- 0.43%. Efficacy in amastigotes revealed IC50 values of 0.33 mu M and 31.2 mu M for the nanostructured and free NFOH, respectively (95-fold increase). The cytotoxicity study indicated low toxicity of the PBCA-NFOH-NPs to macrophages. The selectivity index was 370.6, which is 49-fold higher than free NFOH (7.6). Such findings indicated that improved efficacy could be due to NP internalisation following site-specific drug delivery and reactivation of immune protective reactions by the NP components. Thus, PBCA-NFOH-NPs have the potential to significantly improve the treatment of leishmaniasis, with reduced systemic side effects.engrestrictedAccessHydroxymethylnitrofurazonePoly (n-butyl cyanoacrylate)LeishmaniasisDrug deliveryPolymeric nanoparticlesDextranvisceral leishmaniasisnanoparticlesdeliverydextranacidTargeting Leishmania amazonensis amastigotes through macrophage internalisation of a hydroxymethylnitrofurazone nanostructured polymeric systemarticleCopyright ELSEVIER SCIENCE BV10.1016/j.ijantimicag.2017.01.033Infectious DiseasesMicrobiologyPharmacology & Pharmacy1872-7913