EDUARDO MASSAD

(Fonte: Lattes)
Índice h a partir de 2011
24
Projetos de Pesquisa
Unidades Organizacionais
Departamento de MedicinaLegal, Ética Médica e Medicina Social e do Trabalho, Faculdade de Medicina - Docente
LIM/01 - Laboratório de Informática Médica, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 25
  • article 27 Citação(ões) na Scopus
    Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic Games in Rio de Janeiro, Brazil
    (2016) BURATTINI, M. N.; COUTINHO, F. A. B.; LOPEZ, L. F.; XIMENES, R.; QUAM, M.; WILDER-SMITH, A.; MASSAD, E.
  • article 31 Citação(ões) na Scopus
    The risk of dengue for non-immune foreign visitors to the 2016 summer olympic games in Rio de Janeiro, Brazil
    (2016) XIMENES, Raphael; AMAKU, Marcos; LOPEZ, Luis Fernandez; COUTINHO, Francisco Antonio Bezerra; BURATTINI, Marcelo Nascimento; GREENHALGH, David; WILDER-SMITH, Annelies; STRUCHINER, Claudio Jose; MASSAD, Eduardo
    Background: Rio de Janeiro in Brazil will host the Summer Olympic Games in 2016. About 400,000 non-immune foreign tourists are expected to attend the games. As Brazil is the country with the highest number of dengue cases worldwide, concern about the risk of dengue for travelers is justified. Methods: A mathematical model to calculate the risk of developing dengue for foreign tourists attending the Olympic Games in Rio de Janeiro in 2016 is proposed. A system of differential equation models the spread of dengue amongst the resident population and a stochastic approximation is used to assess the risk to tourists. Historical reported dengue time series in Rio de Janeiro for the years 2000-2015 is used to find out the time dependent force of infection, which is then used to estimate the potential risks to a large tourist cohort. The worst outbreak of dengue occurred in 2012 and this and the other years in the history of Dengue in Rio are used to discuss potential risks to tourists amongst visitors to the forthcoming Rio Olympics. Results: The individual risk to be infected by dengue is very much dependent on the ratio asymptomatic/symptomatic considered but independently of this the worst month of August in the period studied in terms of dengue transmission, occurred in 2007. Conclusions: If dengue returns in 2016 with the pattern observed in the worst month of August in history (2007), the expected number of symptomatic and asymptomatic dengue cases among tourists will be 23 and 206 cases, respectively. This worst case scenario would have an incidence of 5.75 (symptomatic) and 51.5 (asymptomatic) per 100,000 individuals.
  • article 18 Citação(ões) na Scopus
    Modelling the impact of the long-term use of insecticide-treated bed nets on Anopheles mosquito biting time
    (2017) FERREIRA, Claudia P.; LYRA, Silas P.; AZEVEDO, Franciane; GREENHALGH, David; MASSAD, Eduardo
    Background: Evidence of changing in biting and resting behaviour of the main malaria vectors has been mounting up in recent years as a result of selective pressure by the widespread and long-term use of insecticide-treated bed nets (ITNs), and indoor residual spraying. The impact of resistance behaviour on malaria intervention efficacy has important implications for the epidemiology and malaria control programmes. In this context, a theoretical framework is presented to understand the mechanisms determining the evolution of feeding behaviour under the pressure of use of ITNs. Methods: An agent-based stochastic model simulates the impact of insecticide-treated bed nets on mosquito fitness by reducing the biting rates, as well as increasing mortality rates. The model also incorporates a heritability function that provides the necessary genetic plasticity upon which natural selection would act to maximize the fitness under the pressure of the control strategy. Results: The asymptotic equilibrium distribution of mosquito population versus biting time is shown for several daily uses of ITNs, and the expected disruptive selection on this mosquito trait is observed in the simulations. The relative fitness of strains that bite at much earlier time with respect to the wild strains, when a threshold of about 50% of ITNs coverage highlights the hypothesis of a behaviour selection. A sensitivity analysis has shown that the top three parameters that play a dominant role on the mosquito fitness are the proportion of individuals using bed nets and its effectiveness, the impact of bed nets on mosquito oviposition, and the mosquito genetic plasticity related to changing in biting time. Conclusion: By taking the evolutionary aspect into account, the model was able to show that the long-term use of ITNs, although representing an undisputed success in reducing malaria incidence and mortality in many affected areas, is not free of undesirable side effects. From the evolutionary point of view of the parasite virulence, it should be expected that plasmodium parasites would be under pressure to reduce their virulence. This speculative hypothesis can eventually be demonstrated in the medium to long-term use of ITNs.
  • article 18 Citação(ões) na Scopus
    The risk of urban yellow fever resurgence in Aedes-infested American cities
    (2018) MASSAD, Eduardo; AMAKU, Marcos; COUTINHO, Francisco Antonio Bezerra; STRUCHINER, Claudio Jose; LOPEZ, Luis Fernandez; COELHO, Giovanini; WILDER-SMITH, Annelies; BURATTINI, Marcelo Nascimento
    Aedes aegypti, historically known as yellow fever (YF) mosquito, transmits a great number of other viruses such as Dengue, West Nile, Chikungunya, Zika, Mayaro and perhaps Oropouche, among others. Well established in Africa and Asia, Aedes mosquitoes are now increasingly invading large parts of the American continent, and hence the risk of urban YF resurgence in the American cities should because of great concern to public health authorities. Although no new urban cycle of YF was reported in the Americas since the end of an Aedes eradication programme in the late 1950s, the high number of non-vaccinated individuals that visit endemic areas, that is, South American jungles where the sylvatic cycle of YF is transmitted by canopy mosquitoes, and return to Aedes-infested urban areas, increases the risk of resurgence of the urban cycle of YF. We present a method to estimate the risk of urban YF resurgence in dengue-endemic cities. This method consists in (1) to estimate the number of Aedes mosquitoes that explains a given dengue outbreak in a given region; (2) calculate the force of infection caused by the introduction of one infective individual per unit area in the endemic area under study; (3) using the above estimates, calculate the probability of at least one autochthonous YF case per unit area produced by one single viraemic traveller per unit area arriving from a YF endemic or epidemic sylvatic region at the city studied. We demonstrate that, provided the relative vector competence, here defined as the capacity to being infected and disseminate the virus, of Ae. aegypti is greater than 0.7 (with respect to dengue), one infected traveller can introduce urban YF in a dengue endemic area.
  • article 9 Citação(ões) na Scopus
    Interpretations and pitfalls in modelling vector-transmitted infections
    (2015) AMAKU, M.; AZEVEDO, F.; BURATTINI, M. N.; COUTINHO, F. A. B.; LOPEZ, L. F.; MASSAD, E.
    In this paper we propose a debate on the role of mathematical models in evaluating control strategies for vector-borne infections. Mathematical models must have their complexity adjusted to their goals, and we have basically two classes of models. At one extreme we have models that are intended to check if our intuition about why a certain phenomenon occurs is correct. At the other extreme, we have models whose goals are to predict future outcomes. These models are necessarily very complex. There are models in between these classes. Here we examine two models, one of each class and study the possible pitfalls that may be incurred. We begin by showing how to simplify the description of a complicated model for a vector-borne infection. Next, we examine one example found in a recent paper that illustrates the dangers of basing control strategies on models without considering their limitations. The model in this paper is of the second class. Following this, we review an interesting paper (a model of the first class) that contains some biological assumptions that are inappropriate for dengue but may apply to other vector-borne infections. In conclusion, we list some misgivings about modelling presented in this paper for debate.
  • article 11 Citação(ões) na Scopus
    Dengue outlook for the World Cup in Brazil
    (2014) MASSAD, Eduardo; BURATTINI, Marcelo N.; XIMENES, Raphael; AMAKU, Marcos; WILDER-SMITH, Annelies
  • conferenceObject
    Potential impact of dengue vaccination: a modeling approach
    (2012) MASSAD, E.
    Dengue is a major public health concern in Brazil. Dengue vaccines should help, when available, to significantly reduce the burden of dengue but raise a number of question around their best use. In this context, mathematical models can provide insights on questions such as optimal age for vaccination or respective benefits of routine and catch-up vaccination at different coverage rates. We first present analytical results related to the optimal age for vaccination and expected benefits from catch-up campaigns using the most recent seroprevalence data available for Brazil. We then present the results obtained with an age-structured, host-vector compartmental model that captures seasonality and interactions between the four dengue serotypes. This model was adapted to the Brazilian situation through the use of surveillance data for age and severity-specific incidence as well as available information on vector density and dengue seroprevalence according to age. Both analyses lead to the conclusion that starting routine vaccination at an early age (2 years of age) provides the largest reduction of dengue incidence per vaccine dose administered whatever the force of infection, vaccine coverage or efficacy considered. Routine vaccination alone is however expected to get a limited impact on dengue incidence the first year of its implementation. Complementing routine vaccination by catch-up campaigns enables to obtain very rapidly a high level of disease control if offered to a sufficient number of cohorts (e.g. children from 3 to 14 years of age). The results of an ongoing efficacy and large scale safety study should help to refine the results on the benefits expected from a dengue vaccination program.
  • article 3 Citação(ões) na Scopus
    Modelling the importation risk of measles during the Hajj
    (2019) MASSAD, Eduard; WILDER-SMITH, Annika B.; WILDER-SMITH, Annelies; MEMISH, Ziad A.
  • article 15 Citação(ões) na Scopus
    Dengue infections in non-immune travellers to Thailand
    (2013) MASSAD, E.; ROCKLOV, J.; WILDER-SMITH, A.
    Dengue is the most frequent arboviral disease and is expanding geographically. Dengue is also increasingly being reported in travellers, in particular in travellers to Thailand. However, data to quantify the risk of travellers acquiring dengue when travelling to Thailand are lacking. Using mathematical modelling, we set out to estimate the risk of non-immune persons acquiring dengue when travelling to Thailand. The model is deterministic with stochastic parameters and assumes a Poisson distribution for the mosquitoes' biting rate and a Gamma distribution for the probability of acquiring dengue from an infected mosquito. From the force of infection we calculated the risk of dengue acquisition for travellers to Thailand arriving in a typical year (averaged over a 17-year period) in the high season of transmission. A traveller arriving in the high season of transmission and remaining for 7 days has a risk of acquiring dengue of 0.2% (95% CI 0.16-0.23), whereas the risk for travel of 15 and 30 days' duration is 0.46% (95% CI 0.41-0.50) and 0.81% (95% CI 0.76-0.87), respectively. Our data highlight that the risk of non-immune travellers acquiring dengue in Thailand is substantial. The incidence of 0.81% after a 1-month stay is similar to that reported in prospective seroconversion studies in Israeli travellers to Thailand, highlighting that our models are consistent with actual data. Risk estimates based on mathematical modelling offer more detailed information depending on various travel scenarios, and will help the travel medicine provider give better evidence-based advice for travellers to dengue-endemic countries.
  • article 5 Citação(ões) na Scopus
    Modelling an optimum vaccination strategy against ZIKA virus for outbreak use
    (2019) MASSAD, Eduardo; COUTINHOL, Francisco Antonio Bezerra; WILDER-SMITH, Annelies
    We present a model to optimise a vaccination campaign aiming to prevent or to curb a Zika virus outbreak. We show that the optimum vaccination strategy to reduce the number of cases by a mass vaccination campaign should start when the Aedes mosquitoes' density reaches the threshold of 1.5 mosquitoes per humans, the moment the reproduction number crosses one. The maximum time it is advisable to wait for the introduction of a vaccination campaign is when the first ZIKV case is identified, although this would not be as effective to minimise the number of infections as when the mosquitoes' density crosses the critical threshold. This suboptimum strategy, however, would still curb the outbreak. In both cases, the catch up strategy should aim to vaccinate at least 25% of the target population during a concentrated effort of 1 month immediately after identifying the threshold. This is the time taken to accumulate the herd immunity threshold of 56.5%. These calculations were done based on theoretical assumptions that vaccine implementation would be feasible within a very short time frame.