Interpretations and pitfalls in modelling vector-transmitted infections

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
CAMBRIDGE UNIV PRESS
Citação
EPIDEMIOLOGY AND INFECTION, v.143, n.9, p.1803-1815, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In this paper we propose a debate on the role of mathematical models in evaluating control strategies for vector-borne infections. Mathematical models must have their complexity adjusted to their goals, and we have basically two classes of models. At one extreme we have models that are intended to check if our intuition about why a certain phenomenon occurs is correct. At the other extreme, we have models whose goals are to predict future outcomes. These models are necessarily very complex. There are models in between these classes. Here we examine two models, one of each class and study the possible pitfalls that may be incurred. We begin by showing how to simplify the description of a complicated model for a vector-borne infection. Next, we examine one example found in a recent paper that illustrates the dangers of basing control strategies on models without considering their limitations. The model in this paper is of the second class. Following this, we review an interesting paper (a model of the first class) that contains some biological assumptions that are inappropriate for dengue but may apply to other vector-borne infections. In conclusion, we list some misgivings about modelling presented in this paper for debate.
Palavras-chave
Dengue, mathematical modelling, vector-borne infections
Referências
  1. Amaku M, 2014, B MATH BIOL, V76, P697, DOI 10.1007/s11538-014-9939-5
  2. Amaku M, 2013, COMP MATH MATH PHYS, V2013
  3. Anderson RM, 1991, INFECT DIS HUMANS DY
  4. Burattini MN, 2009, MED HYPOTHESES, V73, P110, DOI 10.1016/j.mehy.2009.01.036
  5. Coudeville L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051244
  6. Coutinho FAB, 2006, B MATH BIOL, V68, P2263, DOI 10.1007/s11538-006-9108-6
  7. Favier C, 2006, TROP MED INT HEALTH, V11, P332, DOI 10.1111/j.1365-3156.2006.01560.x
  8. Garba SM, 2008, MATH BIOSCI, V215, P11, DOI 10.1016/j.mbs.2008.05.002
  9. Lopez LF, 2002, CR BIOL, V325, P1073, DOI 10.1016/S1631-0691(02)01534-2
  10. Lopez LF, 1999, MATH COMPUT MODEL, V29, P55, DOI 10.1016/S0895-7177(99)00062-X
  11. MACDONALD G, 1952, Trop Dis Bull, V49, P813
  12. MARQUES CA, 1994, T ROY SOC TROP MED H, V88, P58, DOI 10.1016/0035-9203(94)90498-7
  13. Massad E, 2010, TROP MED INT HEALTH, V15, P120, DOI 10.1111/j.1365-3156.2009.02413.x
  14. Massad E, 2001, T ROY SOC TROP MED H, V95, P370, DOI 10.1016/S0035-9203(01)90184-1
  15. Massad E, 2011, LANCET, V377, P1630, DOI 10.1016/S0140-6736(11)60470-4
  16. Massad E, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-296
  17. MAY RM, 1988, PHILOS T ROY SOC B, V321, P565, DOI 10.1098/rstb.1988.0108
  18. Mazilu DA, 2012, EUR J PHYS, V33, P793, DOI 10.1088/0143-0807/33/4/793
  19. Pinho STR, 2010, PHILOS T R SOC A, V368, P5679, DOI 10.1098/rsta.2010.0278
  20. Postnikov EB, 2007, MATH BIOSCI, V208, P205, DOI 10.1016/j.mbs.2006.10.004
  21. Riley S, EPIDEMICS IN PRESS
  22. Ross R, 1911, PREVENTION MALARIA, V2nd