JOAO BATISTA BORGES SOBRINHO DORINI

(Fonte: Lattes)
Índice h a partir de 2011
15
Projetos de Pesquisa
Unidades Organizacionais
LIM/09 - Laboratório de Pneumologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 12
  • article 4 Citação(ões) na Scopus
    Zero expiratory pressure and low oxygen concentration promote heterogeneity of regional ventilation and lung densities
    (2016) BORGES, J. B.; PORRA, L.; PELLEGRINI, M.; TANNOIA, A.; DEROSA, S.; LARSSON, A.; BAYAT, S.; PERCHIAZZI, G.; HEDENSTIERNA, G.
    BackgroundIt is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. MethodsIn a small animal model, synchrotron imaging was used to measure lung aeration and regional-specific ventilation (sV.). Heterogeneity of ventilation was calculated as the coefficient of variation in sV. (CVsV.). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end-expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH(2)O and F(I)O(2)1.0 (Open Lung-PEEP = OLP). ResultsThe mean tissue density at OLP was lower than ZEEP-1.0 and ZEEP-0.21. There were larger subregions with low sV. and poor aeration at ZEEP-0.21 than at OLP: 12.9 9.0 vs. 0.6 +/- 0.4% in the non-dependent level, and 17.5 +/- 8.2 vs. 0.4 +/- 0.1% in the dependent one (P = 0.041). The CVsV. of the total imaged lung at PEEP 12 cmH(2)O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 +/- 0.03 vs. 0.54 +/- 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. ConclusionZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.
  • article 76 Citação(ões) na Scopus
    How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography
    (2012) MATOS, Gustavo F. J. de; STANZANI, Fabiana; PASSOS, Rogerio H.; FONTANA, Mauricio F.; ALBALADEJO, Renata; CASERTA, Raquel E.; SANTOS, Durval C. B.; BORGES, Joao Batista; AMATO, Marcelo B. P.; BARBAS, Carmen S. V.
    Introduction: The benefits of higher positive end expiratory pressure (PEEP) in patients with acute respiratory distress syndrome (ARDS) have been modest, but few studies have fully tested the ""open-lung hypothesis"". This hypothesis states that most of the collapsed lung tissue observed in ARDS can be reversed at an acceptable clinical cost, potentially resulting in better lung protection, but requiring more intensive maneuvers. The short-/middle-term efficacy of a maximum recruitment strategy (MRS) was recently described in a small physiological study. The present study extends those results, describing a case-series of non-selected patients with early, severe ARDS submitted to MRS and followed until hospital discharge or death. Methods: MRS guided by thoracic computed tomography (CT) included two parts: a recruitment phase to calculate opening pressures (incremental steps under pressure-controlled ventilation up to maximum inspiratory pressures of 60 cmH(2)O, at constant driving-pressures of 15 cmH(2)O); and a PEEP titration phase (decremental PEEP steps from 25 to 10 cmH2O) used to estimate the minimum PEEP to keep lungs open. During all steps, we calculated the size of the non-aerated (-100 to +100 HU) compartment and the recruitability of the lungs (the percent mass of collapsed tissue re-aerated from baseline to maximum PEEP). Results: A total of 51 severe ARDS patients, with a mean age of 50.7 years (84% primary ARDS) was studied. The opening plateau-pressure was 59.6 (+/- 5.9 cmH(2)O), and the mean PEEP titrated after MRS was 24.6 (+/- 2.9 cmH(2)O). Mean PaO2/FiO(2) ratio increased from 125 (+/- 43) to 300 (+/- 103; P < 0.0001) after MRS and was sustained above 300 throughout seven days. Non-aerated parenchyma decreased significantly from 53.6% (interquartile range (IQR): 42.5 to 62.4) to 12.7% (IQR: 4.9 to 24.2) (P < 0.0001) after MRS. The potentially recruitable lung was estimated at 45% (IQR: 25 to 53). We did not observe major barotrauma or significant clinical complications associated with the maneuver. Conclusions: MRS could efficiently reverse hypoxemia and most of the collapsed lung tissue during the course of ARDS, compatible with a high lung recruitability in non-selected patients with early, severe ARDS. This strategy should be tested in a prospective randomized clinical trial.
  • article 119 Citação(ões) na Scopus
    Electrical impedance tomography in acute respiratory distress syndrome
    (2018) BACHMANN, M. Consuelo; MORAIS, Caio; BUGEDO, Guillermo; BRUHN, Alejandro; MORALES, Arturo; BORGES, Joao B.; COSTA, Eduardo; RETAMAL, Jaime
    Acute respiratory distress syndrome (ARDS) is a clinical entity that acutely affects the lung parenchyma, and is characterized by diffuse alveolar damage and increased pulmonary vascular permeability. Currently, computed tomography (CT) is commonly used for classifying and prognosticating ARDS. However, performing this examination in critically ill patients is complex, due to the need to transfer these patients to the CT room. Fortunately, new technologies have been developed that allow the monitoring of patients at the bedside. Electrical impedance tomography (EIT) is a monitoring tool that allows one to evaluate at the bedside the distribution of pulmonary ventilation continuously, in real time, and which has proven to be useful in optimizing mechanical ventilation parameters in critically ill patients. Several clinical applications of EIT have been developed during the last years and the technique has been generating increasing interest among researchers. However, among clinicians, there is still a lack of knowledge regarding the technical principles of EIT and potential applications in ARDS patients. The aim of this review is to present the characteristics, technical concepts, and clinical applications of EIT, which may allow better monitoring of lung function during ARDS.
  • article 43 Citação(ões) na Scopus
    Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study
    (2018) RETAMAL, Jaime; HURTADO, Daniel; VILLARROEL, Nicolas; BRUHN, Alejandro; BUGEDO, Guillermo; AMATO, Marcelo Britto Passos; COSTA, Eduardo Leite Vieira; HEDENSTIERNA, Goeran; LARSSON, Anders; BORGES, Joao Batista
    Objective: It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Design: Retrospective analysis of CT images and positron emission tomography images using [F-18]fluoro-2-deoxy-D-glucose. Setting: University animal research laboratory. Subjects: Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Interventions: Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4cm H2O) and high inspiratory pressures (mean plateau pressure, 45cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. Measurements and Main Results: The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.33.4 to 14.0 +/- 4.9mL/cm H2O; p < 0.05) and oxygenation (Pao(2)/Fio(2), 489 +/- 80 to 92 +/- 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F-18]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R-2 = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals), which was not observed in the control animals. Conclusion: In this porcine acute respiratory distress syndrome model, regional lung strain was spatially correlated with regional inflammation, supporting that strain is a relevant and prominent determinant of ventilator-induced lung injury.
  • article 5 Citação(ões) na Scopus
    Open Lung in Lateral Decubitus With Differential Selective Positive End-Expiratory Pressure in an Experimental Model of Early Acute Respiratory Distress Syndrome
    (2015) BORGES, Joao Batista; SENTURK, Mert; AHLGREN, Oskar; HEDENSTIERNA, Goran; LARSSON, Anders
    Objective: After lung recruitment, lateral decubitus and differential lung ventilation may enable the titration and application of optimum-selective positive end-expiratory pressure values for the dependent and nondependent lungs. We aimed at compare the effects of optimum-selective positive end-expiratory pressure with optimum global positive end-expiratory pressure on regional collapse and aeration distribution in an experimental model of acute respiratory distress syndrome. Design: Prospective laboratory investigation. Setting: University animal research laboratory. Subjects: Seven piglets. Interventions: A one-hit injury acute respiratory distress syndrome model was established by repeated lung lavages. After replacing the tracheal tube by a double-lumen one, we initiated lateral decubitus and differential ventilation. After maximum-recruitment maneuver, decremental positive end-expiratory pressure titration was performed. The positive end-expiratory pressure corresponding to maximum dynamic compliance was defined globally (optimum global positive end-expiratory pressure) and for each individual lung (optimum-selective positive end-expiratory pressure). After new maximum-recruitment maneuver, two steps were performed in randomized order (15 min each): ventilation applying the optimum global positive end-expiratory pressure and the optimum-selective positive end-expiratory pressure. CT scans were acquired at end expiration and end inspiration. Measurements and Main Results: Aeration homogeneity was evaluated as a nondependent/dependent ratio (percent of total gas content in upper lung/percent of total gas content in lower lung) and tidal recruitment as the difference in the percent mass of nonaerated tissue between expiration and inspiration. At the end of the 15-minute optimum-selective positive end-expiratory pressure, compared with the optimum global positive end-expiratory pressure, resulted in 1) decrease in the percent mass of collapse in the lower lung at expiratory CT (19% 15% vs 4% +/- 5%; p = 0.03); 2) decrease in the nondependent/dependent ratio between the optimum global positive end-expiratory pressure-expiratory-CT and optimum-selective positive end-expiratory pressure-expiratory-CT (3.7 +/- 1.2 vs 0.8 +/- 0.5; p = 0.01); 3) decrease in the nondependent/dependent ratio between the optimum global positive end-expiratory pressure-inspiratory-CT and optimum-selective positive end-expiratory pressure-inspiratory-CT (2.8 +/- 1.1 vs 0.6 +/- 0.3; p = 0.01); and 4) less tidal recruitment (p = 0.049). Conclusions: After maximum lung recruitment, lateral decubitus and differential lung ventilation enabled the titration of optimum-selective positive end-expiratory pressure values for the dependent and the nondependent lungs, made possible the application of an optimized regional open lung approach, promoted better aeration distribution, and minimized lung tissue inhomogeneities.
  • article 49 Citação(ões) na Scopus
    Early Inflammation Mainly Affects Normally and Poorly Aerated Lung in Experimental Ventilator-Induced Lung Injury*
    (2014) BORGES, Joao Batista; COSTA, Eduardo L. V.; SUAREZ-SIPMANN, Fernando; WIDSTROM, Charles; LARSSON, Anders; AMATO, Marcelo; HEDENSTIERNA, Goran
    Objective: The common denominator in most forms of ventilator-induced lung injury is an intense inflammatory response mediated by neutrophils. PET with [F-18]fluoro-2-deoxy-d-glucose can be used to image cellular metabolism, which, during lung inflammatory processes, mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. The aim of this study was to assess the location and magnitude of lung inflammation using PET imaging of [F-18]fluoro-2-deoxy-d-glucose in a porcine experimental model of early acute respiratory distress syndrome. Design: Prospective laboratory investigation. Setting: A university animal research laboratory. Subjects: Seven piglets submitted to experimental ventilator-induced lung injury and five healthy controls. Interventions: Lung injury was induced by lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. All animals were subsequently studied with dynamic PET imaging of [F-18]fluoro-2-deoxy-d-glucose. CT scans were acquired at end expiration and end inspiration. Measurements and Main Results: [F-18]fluoro-2-deoxy-d-glucose uptake rate was computed for the whole lung, four isogravitational regions, and regions grouping voxels with similar density. Global and intermediate gravitational zones [F-18]fluoro-2-deoxy-d-glucose uptakes were higher in ventilator-induced lung injury piglets compared with controls animals. Uptake of normally and poorly aerated regions was also higher in ventilator-induced lung injury piglets compared with control piglets, whereas regions suffering tidal recruitment or tidal hyperinflation had [F-18]fluoro-2-deoxy-d-glucose uptakes similar to controls. Conclusions: The present findings suggest that normally and poorly aerated regionscorresponding to intermediate gravitational zonesare the primary targets of the inflammatory process accompanying early experimental ventilator-induced lung injury. This may be attributed to the small volume of the aerated lung, which receives most of ventilation.
  • article 7 Citação(ões) na Scopus
    Open lung approach ventilation abolishes the negative effects of respiratory rate in experimental lung injury
    (2016) RETAMAL, J.; BORGES, J. B.; BRUHN, A.; FEINSTEIN, R.; HEDENSTIERNA, G.; SUAREZ-SIPMANN, F.; LARSSON, A.
    BackgroundWe recently reported that a high respiratory rate was associated with less inflammation than a low respiratory rate, but caused more pulmonary edema in a model of ARDS when an ARDSNet ventilatory strategy was used. We hypothesized that an open lung approach (OLA) strategy would neutralize the independent effects of respiratory rate on lung inflammation and edema. This hypothesis was tested in an ARDS model using two clinically relevant respiratory rates during OLA strategy. MethodsTwelve piglets were subjected to an experimental model of ARDS and randomized into two groups: LRR (20 breaths/min) and HRR (40 breaths/min). They were mechanically ventilated for 6 h according to an OLA strategy. We assessed respiratory mechanics, hemodynamics, and extravascular lung water (EVLW). At the end of the experiment, wet/dry ratio, regional histology, and cytokines were evaluated. ResultsAfter the ARDS model was established, Cdyn,rs decreased from 21 3.3 to 9.0 +/- 1.8 ml/cmH(2)O (P < 0.0001). After the lung recruitment maneuver, Cdyn,rs increased to the pre-injury value. During OLA ventilation, no differences in respiratory mechanics, hemodynamics, or EVLW were observed between groups. Wet/dry ratio and histological scores were not different between groups. Cytokine quantification was similar and showed a homogeneous distribution throughout the lung in both groups. ConclusionContrary to previous findings with the ARDSNet strategy, respiratory rate did not influence lung inflammatory response or pulmonary edema during OLA ventilation in experimental ARDS. This indicates that changing the respiratory rate when OLA ventilation is used will not exacerbate lung injury.
  • article 18 Citação(ões) na Scopus
    High respiratory rate is associated with early reduction of lung edema clearance in an experimental model of ARDS
    (2016) RETAMAL, J.; BORGES, J. B.; BRUHN, A.; CAO, X.; FEINSTEIN, R.; HEDENSTIERNA, G.; JOHANSSON, S.; SUAREZ-SIPMANN, F.; LARSSON, A.
    Background: The independent impact of respiratory rate on ventilator-induced lung injury has not been fully elucidated. The aim of this study was to investigate the effects of two clinically relevant respiratory rates on early ventilator-induced lung injury evolution and lung edema during the protective ARDSNet strategy. We hypothesized that the use of a higher respiratory rate during a protective ARDSNet ventilation strategy increases lung inflammation and, in addition, lung edema associated to strain-induced activation of transforming growth factor beta (TGF-beta) in the lung epithelium. Methods: Twelve healthy piglets were submitted to a two-hit lung injury model and randomized into two groups: LRR (20 breaths/min) and HRR (40 breaths/min). They were mechanically ventilated during 6 h according to the ARDSNet strategy. We assessed respiratory mechanics, hemodynamics, and extravascular lung water (EVLW). At the end of the experiment, the lungs were excised and wet/dry ratio, TGF-beta pathway markers, regional histology, and cytokines were evaluated. Results: No differences in oxygenation, PaCO2 levels, systemic and pulmonary arterial pressures were observed during the study. Respiratory system compliance and mean airway pressure were lower in LRR group. A decrease in EVLW over time occurred only in the LRR group (P < 0.05). Wet/dry ratio was higher in the HRR group (P < 0.05), as well as TGF-beta pathway activation. Histological findings suggestive of inflammation and inflammatory tissue cytokines were higher in LRR. Conclusion: HRR was associated with more pulmonary edema and higher activation of the TGF-beta pathway. In contrast with our hypothesis, HRR was associated with less lung inflammation.
  • article 31 Citação(ões) na Scopus
    Reabsorption atelectasis in a porcine model of ARDS: regional and temporal effects of airway closure, oxygen, and distending pressure
    (2013) DEROSA, Savino; BORGES, Joao Batista; SEGELSJO, Monica; TANNOIA, Angela; PELLEGRINI, Mariangela; LARSSON, Anders; PERCHIAZZI, Gaetano; HEDENSTIERNA, Goran
    Little is known about the small airways dysfunction in acute respiratory distress syndrome (ARDS). By computed tomography (CT) imaging in a porcine experimental model of early ARDS, we aimed at studying the location and magnitude of peripheral airway closure and alveolar collapse under high and low distending pressures and high and low inspiratory oxygen fraction (FIO2). Six piglets were mechanically ventilated under anesthesia and muscle relaxation. Four animals underwent saline-washout lung injury, and two served as healthy controls. Beyond the site of assumed airway closure, gas was expected to be trapped in the injured lungs, promoting alveolar collapse. This was tested by ventilation with an FIO2 of 0.25 and 1 in sequence during low and high distending pressures. In the most dependent regions, the gas/tissue ratio of end-expiratory CT, after previous ventilation with FIO2 0.25 low-driving pressure, was significantly higher than after ventilation with FIO2 1; with high-driving pressure, this difference disappeared. Also, significant reduction in poorly aerated tissue and a correlated increase in nonaerated tissue in end-expiratory CT with FIO2 1 low-driving pressure were seen. When high-driving pressure was applied or after previous ventilation with FIO2 0.25 and low-driving pressure, this pattern disappeared. The findings suggest that low distending pressures produce widespread dependent airway closure and with high FIO2, subsequent absorption atelectasis. Low FIO2 prevented alveolar collapse during the study period because of slow absorption of gas behind closed airways.
  • article 183 Citação(ões) na Scopus
    Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial
    (2016) KACMAREK, Robert M.; VILLAR, Jesus; SULEMANJI, Demet; MONTIEL, Raquel; FERRANDO, Carlos; BLANCO, Jesus; KOH, Younsuck; SOLER, Juan Alfonso; MARTINEZ, Domingo; HERNANDEZ, Marianela; TUCCI, Mauro; BORGES, Joao Batista; LUBILLO, Santiago; SANTOS, Arnoldo; ARAUJO, Juan B.; AMATO, Marcelo B. P.; SUAREZ-SIPMANN, Fernando
    Objective: The open lung approach is a mechanical ventilation strategy involving lung recruitment and a decremental positive end-expiratory pressure trial. We compared the Acute Respiratory Distress Syndrome network protocol using low levels of positive end-expiratory pressure with open lung approach resulting in moderate to high levels of positive end-expiratory pressure for the management of established moderate/severe acute respiratory distress syndrome. Design: A prospective, multicenter, pilot, randomized controlled trial. Setting: A network of 20 multidisciplinary ICUs. Patients: Patients meeting the American-European Consensus Conference definition for acute respiratory distress syndrome were considered for the study. Interventions: At 12-36 hours after acute respiratory distress syndrome onset, patients were assessed under standardized ventilator settings (Fio(2)0.5, positive end-expiratory pressure 10 cm H2O). If Pao(2)/Fio(2) ratio remained less than or equal to 200 mm Hg, patients were randomized to open lung approach or Acute Respiratory Distress Syndrome network protocol. All patients were ventilated with a tidal volume of 4 to 8 ml/kg predicted body weight. Measurements and Main Results: From 1,874 screened patients with acute respiratory distress syndrome, 200 were randomized: 99 to open lung approach and 101 to Acute Respiratory Distress Syndrome network protocol. Main outcome measures were 60-day and ICU mortalities, and ventilator-free days. Mortality at day-60 (29% open lung approach vs. 33% Acute Respiratory Distress Syndrome Network protocol, p = 0.18, log rank test), ICU mortality (25% open lung approach vs. 30% Acute Respiratory Distress Syndrome network protocol, p = 0.53 Fisher's exact test), and ventilator-free days (8 [0-20] open lung approach vs. 7 [0-20] d Acute Respiratory Distress Syndrome network protocol, p = 0.53 Wilcoxon rank test) were not significantly different. Airway driving pressure (plateau pressure - positive end-expiratory pressure) and Pao(2)/Fio(2) improved significantly at 24, 48 and 72 hours in patients in open lung approach compared with patients in Acute Respiratory Distress Syndrome network protocol. Barotrauma rate was similar in both groups. Conclusions: In patients with established acute respiratory distress syndrome, open lung approach improved oxygenation and driving pressure, without detrimental effects on mortality, ventilator-free days, or barotrauma. This pilot study supports the need for a large, multicenter trial using recruitment maneuvers and a decremental positive end-expiratory pressure trial in persistent acute respiratory distress syndrome.