SIMONE APARECIDA DE BESSA GARCIA

(Fonte: Lattes)
Índice h a partir de 2011
5
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Radiologia, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 8 de 8
  • article
    Gene expression profiling of triple-negative breast tumors with different expression of secreted protein acidic and cysteine rich (SPARC)
    (2018) ALCANTARA FILHO, Paulo R. de; MANGONE, Flavia R.; PAVANELLI, Ana C.; GARCIA, Simone A. de Bessa; NONOGAKI, Suely; OSORIO, Cynthia A. B. de Toledo; ANDRADE, Victor P. de; NAGAI, Maria A.
    Aim: To determine the expression signature of triple-negative breast cancer (TNBC) with differences of secreted protein acidic and rich in cysteine expression and clinical behavior. Patients, materials & methods: cDNA microarray analysis was performed to determine the expression profiling of TNBC, characterized regarding secreted protein acidic and rich in cysteine expression status. Immunohistochemistry analysis on tissue microarrays containing an independent cohort of TNBC was performed for validation. Results: Negative staining of SOHLH2 and positive staining of DNAJC12 and LIM1 was correlated with a poor outcome of the patients. Conclusion: Our findings provide new information on transcriptome changes associated with the clinical behavior of TNBC that may serve as a potential tool for the identification and characterization of new candidate biomarkers.
  • article 19 Citação(ões) na Scopus
    Prostate apoptosis response-4 is involved in the apoptosis response to docetaxel in MCF-7 breast cancer cells
    (2013) PEREIRA, Michelly C.; BESSA-GARCIA, Simone A. De; BURIKHANOV, Ravshan; PAVANELLI, Ana Carolina; ANTUNES, Lourival; RANGNEKAR, Vivek M.; NAGAI, Maria A.
    Experimental evidence indicates that prostate apoptosis response-4 (Par-4, also known as PAWR) is a key regulator of cancer cell survival and may be a target for cancer-selective targeted therapeutics. Par-4 was first identified in prostate cancer cells undergoing apoptosis. Both intracellular and extracellular Par-4 have been implicated in apoptosis. Relatively little is known about the role of Par-4 in breast cancer cell apoptosis. In this study, we sought to investigate the effects of Par-4 expression on cell proliferation, apoptosis and drug sensitivity in breast cancer cells. MCF-7 cells were stably transfected with expression vectors for Par-4, or transiently transfected with siRNA for Par-4 knockdown. Cell proliferation assays were performed using MTT and apoptosis was evaluated using acridine orange staining, fluorescence microscopy and flow cytometry. Par-4 overexpression reduced MCF-7 proliferation rates. Conversely, Par-4 knockdown led to increased MCF-7 proliferation. Par-4 downregulation also led to increased BCL-2 and reduced BID expression. Par-4 overexpression did not affect the cell cycle profile. However, MCF-7 cells with increased Par-4 expression showed reduced ERK phosphorylation, suggesting that the inhibition of cell proliferation promoted by Par-4 may be mediated by the MAPK/ERK1/2 pathway. MCF-7 cells with increased Par-4 expression showed a marginal increase in early apoptotic cells. Importantly, we found that Par-4 expression modulates apoptosis in response to docetaxel in MCF7 breast cancer cells. Par-4 exerts growth inhibitory effects on breast cancer cells and chemosensitizes them to docetaxel.
  • conferenceObject
  • article 13 Citação(ões) na Scopus
    Insulin-like growth factor-1 and 17 beta-estradiol down-regulate prostate apoptosis response-4 expression in MCF-7 breast cancer cells
    (2011) CASOLARI, Debora A.; PEREIRA, Michelly C.; GARCIA, Simone A. De Bessa; NAGAI, Maria A.
    The PKC apoptosis WTI regulator gene, also named prostate apoptosis response-4 (PAR-4), encodes a pro-apoptotic protein that sensitizes cells to numerous apoptotic stimuli. Insulin-like growth factor-1 (IGF-1) and 17 beta-estradiol (E2), two important factors for breast cancer development and progression, have been shown to down-regulate PAR-4 expression and inhibit apoptosis induced by PAR-4 in neuronal cells. In this study, we sought to investigate the mechanisms of regulation of PAR-4 gene expression in MCF-7 cells treated with E2 or IGF-1. E2 (10 nM) and IGF-1 (12.5 nM) each down-regulated PAR-4 expression in MCF-7 cells after 24 h of treatment. The effect of E2 was dependent on ER activation, as demonstrated by an increase in PAR-4 expression when cells were pretreated for 1 h with 1 mu M ICI-182,780 (ICI) before receiving E2 plus ICI. The effect of IGF-1 was abolished by pre-treatment for 1 h with 30 mu M LY294002 (a specific PI3-K inhibitor), and significantly inhibited by 30 mu M SB202190 (a specific p38MAPK inhibitor). We also demonstrated that E2 acts synergistically with IGF-1, resulting in greater down-regulation of PAR-4 mRNA expression compared with E2 or IGF-1 alone. Our results show for the first time that E2 and IGF-1 inhibit PAR-4 gene expression in MCF-7 cells, suggesting that this down-regulation may provide a selective advantage for breast cancer cell survival.
  • conferenceObject
    Prostate apoptosis response-4 (PAR4) secretion in breast tumor and normal cell lines cultured in hypoxic conditions
    (2018) GARCIA, Simone Aparecida de Bessa; BROBOVNITCHAIA, Irina Gueroldovna; MANGONE, Flavia Rotea; NAGAI, Maria Aparecida
  • article 9 Citação(ões) na Scopus
    PHLDA1 (pleckstrin homology-like domain, family A, member 1) knockdown promotes migration and invasion of MCF10A breast epithelial cells
    (2018) BONATTO, Naieli; CARLINI, Maria Jose; GARCIA, Simone Aparecida de Bessa; NAGAI, Maria Aparecida
    PHLDA1 (pleckstrin homology-like domain, family A, member 1) is a multifunctional protein that plays distinct roles in several biological processes including cell death and therefore its altered expression has been identified in different types of cancer. Progressively loss of PHLDA1 was found in primary and metastatic melanoma while its overexpression was reported in intestinal and pancreatic tumors. Previous work from our group showed that negative expression of PHLDA1 protein was a strong predictor of poor prognosis for breast cancer disease. However, the function of PHLDA1 in mammary epithelial cells and the tumorigenic process of the breast is unclear. To dissect PHLDA1 role in human breast epithelial cells, we generated a clone of MCF10A cells with stable knockdown of PHLDA1 and performed functional studies. To achieve reduced PHLDA1 expression we used shRNA plasmid transfection and then changes in cell morphology and biological behavior were assessed. We found that PHLDA1 downregulation induced marked morphological alterations in MCF10A cells, such as changes in cell-to-cell adhesion pattern and cytoskeleton reorganization. Regarding cell behavior, MCF10A cells with reduced expression of PHLDA1 showed higher proliferative rate and migration ability in comparison with control cells. We also found that MCF10A cells with PHLDA1 knockdown acquired invasive properties, as evaluated by transwell Matrigel invasion assay and showed enhanced colony-forming ability and irregular growth in low attachment condition. Altogether, our results indicate that PHLDA1 downregulation in MCF10A cells leads to morphological changes and a more aggressive behavior.
  • article 8 Citação(ões) na Scopus
    Transcriptional regulation of bidirectional gene pairs by 17 beta-estradiol in MCF-7 breast cancer cells
    (2011) GARCIA, S. A. B.; NAGAI, M. A.
    Using cDNA microarray analysis, we previously identified a set of differentially expressed genes in primary breast tumors based on the status of estrogen and progesterone receptors. In the present study, we performed an integrated computer-assisted and manual search of potential estrogen response element (ERE) binding sites in the promoter region of these genes to characterize their potential to be regulated by estrogen receptors (ER). Publicly available databases were used to annotate the position of these genes in the genome and to extract a 5' flanking region 2 kb upstream to 2 kb downstream of the transcription start site for transcription binding site analysis. The search for EREs and other binding sites was performed using several publicly available programs. Overall, approximately 40% of the genes analyzed were potentially able to be regulated by estrogen via ER. In addition, 17% of these genes are located very close to other genes organized in a head-to-head orientation with less than 1.0 kb between their transcript units, sharing a bidirectional promoter, and could be classified as bidirectional gene pairs. Using quantitative real-time PCR, we further investigated the effects of 17 beta-estradiol and antiestrogens on the expression of the bidirectional gene pairs in MCF-7 breast cancer cells. Our results showed that some of these gene pairs, such as TXNDC9/EIF5B, GALNS/TRAPPC2L, and SERINC1/PKIB, are modulated by 17 beta-estradiol via ER in MCF-7 breast cancer cells. Here, we also characterize the promoter region of potential ER-regulated genes and provide new information on the transcriptional regulation of bidirectional gene pairs.
  • article 11 Citação(ões) na Scopus
    Prostate apoptosis response 4 (PAR4) expression modulates WNT signaling pathways in MCF7 breast cancer cells: A possible mechanism underlying PAR4-mediated docetaxel chemosensitivity
    (2017) GARCIA, Simone Aparecida de Bessa; PAVANELLI, Ana Carolina; MELO, Natalia Cruz e; NAGAI, Maria Aparecida
    Docetaxel is an effective drug for the treatment of metastatic breast cancer. However, the exact mechanisms and/or markers associated with chemosensitivity or resistance to docetaxel remain unclear. We previously showed that the expression of prostate apoptosis response 4 (PAR4) inhibits the growth of MCF7 breast cancer cells and increases their sensitivity to docetaxel. Using cDNA microarray analysis, we evaluated transcriptome changes in MCF7 cells expressing increased levels of PAR4 and control cells before and after docetaxel treatment. Some of the top gene networks generated from the differentially expressed genes were related to the wingless-type MMTV integration 1 (WNT) canonical (WNT/-catenin) and non-canonical (-catenin-independent) pathways. The Human WNT signaling pathway RT2 profiler PCR array was used to validate the effects of PAR4 on the expression pattern of genes involved in the WNT pathway. CACNAD2A3, GDF5 and IL6 were upregulated and NANOG was downregulated in the MCF7 breast cancer cells expressing increased levels of PAR4 after treatment with docetaxel, likely indicating inactivation of the WNT/-catenin pathway. Upregulation of FGF7, LEF1 and TWIST1 indicated activation of the WNT/-catenin pathway. Although preliminary, our findings could be of particular interest for understanding the action of PAR4 in chemosensitivity, particularly to increase the specificity and effectiveness of drug treatment and overcome resistance to chemotherapy. Further studies are needed to better understand the biological roles of PAR4 in the regulation of WNT pathways in breast cancer cells in response to docetaxel and other chemotherapeutic agents.