Zoonotic Malaria Risk in Serra Do Mar, Atlantic Forest, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
RANGEL, Marina E. O.
OLIVEIRA, Tatiane M. P.
MUCCI, Luis F.
LOSS, Ana Carolina
LOAIZA, Jose R.
LAPORTA, Gabriel Z.
SALLUM, Maria Anice M.
Citação
MICROORGANISMS, v.11, n.10, article ID 2465, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Here, the main goal is to assess natural infections of Plasmodium spp. in anophelines in a forest reserve from the same region where we previously found a surprisingly high rate (5.2%) of plasmodia infections (n = 25) in Kerteszia mosquitoes (N = 480) on the slopes of Serra do Mar, Atlantic Forest, Brazil. The mosquito collection sampling was carried out at the Legado das aguas Forest Reserve using CDC light traps and Shannon traps at night (5-10 pm) in 3-day collections in November 2021 and March, April, May, and November 2022. The captured specimens were morphologically identified at the species level and had their genomic DNA extracted in pools of up to 10 mosquitoes/pool. Each pool was tested using 18S qPCR and cytb nested PCR plus sequencing. A total of 5301 mosquitoes, mostly belonging to the genus Kerteszia (99.7%), were sampled and sorted into 773 pools. Eight pools positive for Plasmodium spp. were identified: four for Plasmodium spp., one for P. vivax or P. simium, one for P. malariae or P. brasilianum, and two for the P. falciparum-like parasite. After Sanger sequencing, two results were further confirmed: P. vivax or P. simium and P. malariae or P. brasilianum. The minimum infection rate for Kerteszia mosquitoes was 0.15% (eight positive pools/5285 Kerteszia mosquitoes). The study reveals a lower-than-expected natural infection rate (expected = 5.2% vs. observed = 0.15%). This low rate relates to the absence of Alouatta monkeys as the main simian malaria reservoir in the studied region. Their absence was due to a significant population decline following the reemergence of yellow fever virus outbreaks in the Atlantic Forest from 2016 to 2019. However, this also indicates the existence of alternative reservoirs to infect Kerteszia mosquitoes. The found zoonotic species of Plasmodium, including the P. falciparum-like parasite, may represent a simian malaria risk and thus a challenge for malaria elimination in Brazil.
Palavras-chave
animals, Anopheles, molecular sequence data, protozoan proteins, sequence analysis
Referências
  1. Amaral LC, 2023, MALARIA J, V22, DOI 10.1186/s12936-023-04601-7
  2. Bajic M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-20706-6
  3. Bickersmith SA, 2015, MEM I OSWALDO CRUZ, V110, P573, DOI 10.1590/0074-02760150031
  4. Branquinho M S, 1997, Rev Panam Salud Publica, V2, P189, DOI 10.1590/S1020-49891997000900004
  5. Brasil P, 2017, LANCET GLOB HEALTH, V5, pE1038, DOI 10.1016/S2214-109X(17)30333-9
  6. Buery JC, 2017, MALARIA J, V16, DOI 10.1186/s12936-017-2080-9
  7. CONTACOS PG, 1963, SCIENCE, V142, P676, DOI 10.1126/science.142.3593.676
  8. Cunha MS, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-41950-3
  9. Fernandes NCCD, 2021, EMERG INFECT DIS, V27, P47, DOI 10.3201/eid2701.191220
  10. de Oliveira TC, 2021, J INFECT DIS, V224, P1950, DOI 10.1093/infdis/jiab214
  11. DEANE L M, 1986, Memorias do Instituto Oswaldo Cruz, V81, P5, DOI 10.1590/S0074-02761986000600002
  12. DEANE LM, 1966, B WORLD HEALTH ORGAN, V35, P805
  13. DEANE LM, 1992, MEM I OSWALDO CRUZ, V87, P1, DOI 10.1590/S0074-02761992000700001
  14. DEANE LM, 1988, AM J TROP MED HYG, V38, P223, DOI 10.4269/ajtmh.1988.38.223
  15. Demari-Silva B, 2020, INFECT GENET EVOL, V78, DOI 10.1016/j.meegid.2019.104061
  16. Duarte AMRC, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-58
  17. Duarte AMRD, 2021, CURR RES PARASITOL V, V1, DOI 10.1016/j.crpvbd.2021.100032
  18. Erkenswick GA, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0184504
  19. Ferreira LM, 2022, PARASITOL RES, V121, P3627, DOI 10.1007/s00436-022-07689-z
  20. Fornace Kimberly M, 2023, Lancet Infect Dis, V23, pe520, DOI 10.1016/S1473-3099(23)00298-0
  21. Foster PG, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.170758
  22. Ilacqua RC, 2018, MEM I OSWALDO CRUZ, V113, DOI 10.1590/0074-02760170522
  23. Lalremruata A, 2015, EBIOMEDICINE, V2, P1186, DOI 10.1016/j.ebiom.2015.07.033
  24. Laporta GZ, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0680-9
  25. Loy DE, 2018, INT J PARASITOL, V48, P531, DOI 10.1016/j.ijpara.2017.12.002
  26. de Alvarenga DAM, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0606-6
  27. Medeiros-Sousa AR, 2021, PLOS NEGLECT TROP D, V15, DOI 10.1371/journal.pntd.0008736
  28. Medeiros-Sousa AR, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2744-8
  29. Monteiro EF, 2020, PATHOGENS, V9, DOI 10.3390/pathogens9070525
  30. Mourier T, 2021, BMC BIOL, V19, DOI 10.1186/s12915-021-01139-5
  31. Sallum MAM, 2020, PARASITE VECTOR, V13, DOI 10.1186/s13071-020-04301-0
  32. Nuralitha S, 2016, ANTIMICROB AGENTS CH, V60, P258, DOI 10.1128/AAC.00538-15
  33. de Assis GMP, 2021, FRONT CELL INFECT MI, V11, DOI 10.3389/fcimb.2021.678996
  34. Rangel MEO, 2021, INSECTS, V12, DOI 10.3390/insects12030248
  35. Duarte AMRD, 2008, ACTA TROP, V107, P179, DOI 10.1016/j.actatropica.2008.05.020
  36. Rodrigues PT, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19554-0
  37. Rougemont M, 2004, J CLIN MICROBIOL, V42, P5636, DOI 10.1128/JCM.42.12.5636-5643.2004
  38. Rutledge GG, 2017, NATURE, V542, P101, DOI 10.1038/nature21038
  39. Secretaria de Estado da Saude Dados, Estatisticos-Secretaria Da Saude-Governo Do Estado de Sao Paulo
  40. Siregar JE, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0857-2
  41. Tazi L, 2011, INFECT GENET EVOL, V11, P209, DOI 10.1016/j.meegid.2010.08.007
  42. Yamasaki T, 2011, J MED PRIMATOL, V40, P392, DOI 10.1111/j.1600-0684.2011.00498.x