The optimal age of vaccination against dengue in Brazil based on serotype-specific forces of infection derived from serological data

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
Citação
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, v.38, n.1, p.1-27, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In this paper, we study a single serotype transmission model of dengue to determine the optimal vaccination age for Dengvaxia. The transmission dynamics are modelled with an age-dependent force of infection. The force of infection for each serotype is derived from the serological profile of dengue in Brazil without serotype distinction and from serotype-specific reported cases. The risk due to an infection is measured by the probability of requiring hospitalization based on Brazilian Ministry of Health data. The optimal vaccination age is determined for any number and combination of the four distinct dengue virus serotypes DENv1-4. The lifetime expected risk is adapted to include antibody dependent enhancement (ADE) and permanent cross-immunity after two heterologous infections. The risk is assumed to be serostatus-dependent. The optimal vaccination age is computed for constant, serostatus-specific vaccine efficacies. Additionally, the vaccination age is restricted to conform to the licence of Dengvaxia in Brazil and the achievable and minimal lifetime expected risks are compared. The optimal vaccination age obtained for the risk of hospitalization varies significantly with the assumptions relating to ADE and cross-immunity. Risk-free primary infections lead to higher optimal vaccination ages, as do asymptomatic third and fourth infections. Sometimes vaccination is not recommended at all, e.g. for any endemic area with a single serotype if primary infections are risk-free. Restricting the vaccination age to Dengvaxia licensed ages mostly leads to only a slightly higher lifetime expected risk and the vaccine should be administered as close as possible to the optimal vaccination age.
Palavras-chave
dengue, vaccination, optimal vaccination age, age-structured mathematical model, serological data, hospitalization risk
Referências
  1. Aguiar M, 2018, LANCET INFECT DIS, V18, P245, DOI 10.1016/S1473-3099(17)30752-1
  2. Aguiar M, 2018, CLIN INFECT DIS, V66, P641, DOI 10.1093/cid/cix882
  3. Aguiar M, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0005179
  4. Aguiar M, 2016, LANCET INFECT DIS, V16, P882, DOI 10.1016/S1473-3099(16)30168-2
  5. Amaku M, 2012, REV INST MED TROP SP, V54, pS18, DOI 10.1590/S0036-46652012000700008
  6. ANDERSON R M, 1991
  7. Anderson R M, 1984, IMA J Math Appl Med Biol, V1, P233
  8. ANDERSON RM, 1985, J HYG-CAMBRIDGE, V94, P365, DOI 10.1017/S002217240006160X
  9. Martinez-Vega RA, 2017, VACCINE, V35, P3910, DOI 10.1016/j.vaccine.2017.06.004
  10. Araujo Valdelaine Etelvina Miranda de, 2017, Rev Bras Epidemiol, V20Suppl 01, P205, DOI 10.1590/1980-5497201700050017
  11. Bhatt S, 2013, NATURE, V496, P504, DOI 10.1038/nature12060
  12. Burattini M. N., 2017, COMMUNICATION
  13. Burattini M. N., 2019, SEROLOGICAL DA UNPUB
  14. Burattini MN, 2016, CLINICS, V71, P455, DOI 10.6061/clinics/2016(08)08
  15. Capeding MR, 2014, LANCET, V384, P1358, DOI 10.1016/S0140-6736(14)61060-6
  16. Dans AL, 2018, J CLIN EPIDEMIOL, V95, P137, DOI 10.1016/j.jclinepi.2017.11.019
  17. Mota MTD, 2016, BRAZ J MICROBIOL, V47, P38, DOI 10.1016/j.bjm.2016.10.008
  18. Fares RCG, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/321873
  19. FARRINGTON CP, 1990, STAT MED, V9, P953, DOI 10.1002/sim.4780090811
  20. Favier C, 2006, TROP MED INT HEALTH, V11, P332, DOI 10.1111/j.1365-3156.2006.01560.x
  21. Ferguson NM, 2016, SCIENCE, V353, P1033, DOI 10.1126/science.aaf9590
  22. Fried JR, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000617
  23. Gibbons RV, 2007, AM J TROP MED HYG, V77, P910, DOI 10.4269/ajtmh.2007.77.910
  24. Nunes PCG, 2019, BMC PUBLIC HEALTH, V19, DOI 10.1186/s12889-019-6641-4
  25. Hadinegoro SR, 2015, NEW ENGL J MED, V373, P1195, DOI 10.1056/NEJMoa1506223
  26. HALSTEAD SB, 1980, B WORLD HEALTH ORGAN, V58, P1
  27. Halstead SB, 2016, J INFECT DIS, V214, P1793, DOI 10.1093/infdis/jiw340
  28. Halstead SB, 2016, VACCINE, V34, P1643, DOI 10.1016/j.vaccine.2016.02.004
  29. Halstead SB, 2009, ANN NY ACAD SCI, V1171, pE48, DOI 10.1111/j.1749-6632.2009.05052.x
  30. HETHCOTE HW, 1988, MATH BIOSCI, V89, P29, DOI 10.1016/0025-5564(88)90111-3
  31. Jain A, 2010, FEMS IMMUNOL MED MIC, V59, P119, DOI 10.1111/j.1574-695X.2010.00670.x
  32. Kotsakiozi P, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005653
  33. Leong ASY, 2007, SEMIN DIAGN PATHOL, V24, P227, DOI 10.1053/j.semdp.2007.07.002
  34. Maier S. B., 2019, THESIS STRATHCLYDE U
  35. Maier SB, 2017, MATH BIOSCI, V294, P15, DOI 10.1016/j.mbs.2017.09.004
  36. Massad E, 2010, TROP MED INT HEALTH, V15, P120, DOI 10.1111/j.1365-3156.2009.02413.x
  37. SAGE Working Group on Dengue Vaccines & WHO Secretariat, 2018, BACKGR PAP DENG VACC
  38. SAGE Working Group on Dengue Vaccines & WHO Secretariat, 2016, BACKGR PAP DENG VACC
  39. Sanofi Pasteur Communication, 2018, SAN PAST COMM SAGE R
  40. Sanofi Pasteur Press Release, 2016, 1 DENG VACC APPR MOR
  41. Sanofi Pasteur Press Release, 2015, DENGV WORLDS 1 DENG
  42. Tran NBC, 2009, J INFECT DIS, V200, P1893, DOI 10.1086/648407
  43. United States Central Intelligence Agency, 2016, BRAZ WORLD FACTB
  44. van Panhuis WG, 2011, AM J TROP MED HYG, V85, P355, DOI 10.4269/ajtmh.2011.11-0125
  45. Wilder-Smith A, 2016, J INFECT DIS, V214, P1796, DOI 10.1093/infdis/jiw341
  46. World Health Organization, 2012, GLOB STRAT DENG PREV
  47. Ximenes R, 2016, BMC INFECT DIS, V16, DOI 10.1186/s12879-016-1517-z