Residual malaria of Atlantic Forest systems and the influence of anopheline fauna

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
FERREIRA, Lucas Mendes
REZENDE, Helder Ricas
BUERY, Julyana Cerqueira
SILVA, Leonardo Santana da
FIGUEIREDO, Thaysa Carolina Cantanhede
FUX, Blima
CERUTTI JUNIOR, Crispim
Citação
PARASITOLOGY RESEARCH, v.120, n.8, p.2759-2767, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
In Brazil, the Amazon region comprises 99.5% of the reported malaria cases. However, another hotspot of the disease is the Atlantic Forest regions, with the sporadic occurrence of autochthonous human cases. In such context, this study sought to investigate the role of anopheline mosquitoes (Diptera: Culicidae) in the residual malaria transmission in Atlantic Forest areas. Two rural areas in the Espirito Santo state were the surveyed sites. Mosquitoes were captured using Shannon trap and CDC light traps and identified into species based on morphological characters. Ecological indexes (Shannon-Wiener diversity, Simpson's dominance, Pielou equability, and Sorensen similarity) were the tools used in the anopheline fauna characterization and comparison along with the two explored areas. The assessment of the sampling adequacy in the studied areas was possible through the generation of a species accumulation curve. A correlation test verified the influence of climatic variables on the anopheline species abundance. A total of 1471 female anopheline mosquitoes were collected from May 2019 to April 2020, representing 13 species. The species richness was higher in Valsugana Velha (hypo-endemic) than in Alto Caparao (non-endemic). There was a significant variation in the species abundance between Valsugana Velha (n = 1438) and Alto Caparao (n = 33). The most abundant species was Anopheles (Kerteszia) cruzii complex Dyar and Knab, 1908 representing 87% of the total anophelines collected. These results suggest that the Plasmodium spp. circulation in Brazilian Atlantic Forest areas occurs mainly due to the high frequency of Anopheles (K.) cruzii complex, considered the principal vector of simian and human malaria in the region.
Palavras-chave
Malaria, Plasmodium, Bromelia, Anopheles, Mosquito vectors, Brazil
Referências
  1. Ashley EA, 2018, LANCET, V391, P1608, DOI 10.1016/S0140-6736(18)30324-6
  2. Brasil P, 2017, LANCET GLOB HEALTH, V5, pE1038, DOI 10.1016/S2214-109X(17)30333-9
  3. Buery JC, 2021, MICROORGANISMS, V9, DOI 10.3390/microorganisms9010132
  4. Buery JC, 2018, MEM I OSWALDO CRUZ, V113, P111, DOI 10.1590/0074-02760170225
  5. Buery JC, 2017, MALARIA J, V16, DOI 10.1186/s12936-017-2080-9
  6. Carlos BC, 2019, PATHOG GLOB HEALTH, V113, P1, DOI 10.1080/20477724.2019.1581463
  7. Ceretti W, 2020, ACTA TROP, V212, DOI 10.1016/j.actatropica.2020.105669
  8. Cerutti C, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-33
  9. Colwell R.K, 2006, ESTIMATES STAT ESTIM
  10. Consoli R.A.G.B, 1994, PRINCIPAIS MOSQUITOS, DOI 10.7476/9788575412909
  11. DEANE L M, 1986, Memorias do Instituto Oswaldo Cruz, V81, P5, DOI 10.1590/S0074-02761986000600002
  12. DEANE L M, 1971, Revista do Instituto de Medicina Tropical de Sao Paulo, V13, P311
  13. DEANE LM, 1988, AM J TROP MED HYG, V38, P223, DOI 10.4269/ajtmh.1988.38.223
  14. Demari-Silva B, 2020, INFECT GENET EVOL, V78, DOI 10.1016/j.meegid.2019.104061
  15. Dorville LFM, 1996, STUD NEOTROP FAUNA E, V31, P68, DOI 10.1076/snfe.31.2.68.13331
  16. Duarte AMRC, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-58
  17. Forattini O P, 1968, Rev Saude Publica, V2, P111
  18. GUIMARAES A E, 1985, Memorias do Instituto Oswaldo Cruz, V80, P171, DOI 10.1590/S0074-02761985000200008
  19. Guimaraes AE, 2000, MEM I OSWALDO CRUZ, V95, P1, DOI 10.1590/S0074-02762000000100001
  20. Guimaraes AE, 2001, REV SAUDE PUBL, V35, P392, DOI 10.1590/S0034-89102001000400010
  21. Instituto Brasileiro de Geografia e Estatistica, 2019, AR TERR BRAS
  22. Instituto Capixaba de Pesquisa Assistencia Tecnica e Extensao Rural, 2020, PROGR ASS TECN EXT R
  23. Instituto Jones dos Santos Neves, 2020, LIM REG DIV REG ESP
  24. Laporta GZ, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0680-9
  25. Loiola Carlos Catão Prates, 2002, Rev Panam Salud Publica, V11, P235, DOI 10.1590/S1020-49892002000400005
  26. Marques TC, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-41
  27. Medeiros-Sousa AR, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2744-8
  28. Melo Adriano Sanchez, 2008, Biota Neotropica, V8, P21
  29. Chaves LSM, 2016, ACTA TROP, V164, P303, DOI 10.1016/j.actatropica.2016.09.023
  30. Guedes MLP, 2014, REV BRAS ENTOMOL, V58, P88, DOI 10.1590/S0085-56262014000100014
  31. Pielou E. C., 1975, ECOLOGICAL DIVERSITY
  32. PINOTTI M, 1951, T ROY SOC TROP MED H, V44, P663, DOI 10.1016/0035-9203(51)90003-X
  33. Reis M, 2010, BIOTA NEOTROP, V10, P333, DOI 10.1590/S1676-06032010000300031
  34. Rezende HR, 2013, J MED ENTOMOL, V50, P598, DOI 10.1603/ME12085
  35. Rezende HR, 2009, NEOTROP ENTOMOL, V38, P272, DOI 10.1590/S1519-566X2009000200017
  36. Ribeiro AF, 2012, J VECTOR ECOL, V37, P316, DOI 10.1111/j.1948-7134.2012.00233.x
  37. Ribeiro MC, 2009, BIOL CONSERV, V142, P1141, DOI 10.1016/j.biocon.2009.02.021
  38. Secretaria do Meio Ambiente e Recursos Hidricos, 2018, ATL MAT ATL EST ESP
  39. Ueno HM, 2007, REV SAUDE PUBL, V41, P269, DOI 10.1590/S0034-89102007000200014
  40. WHO, 2017, GLOB VECT CONTR RESP
  41. World Health Organization, 2012, World Health Organ Tech Rep Ser, P1