Is cerebral microbleed prevalence relevant as a biomarker in amnestic mild cognitive impairment and mild Alzheimer's disease?

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS INC.
Autores
RABELO, A. G. B.
TEIXEIRA, C. V. L.
MAGALHAES, T. N. C.
CARLETTI-CASSANI, A. F. M. K.
AMATO FILHO, A. C. S.
RIBEIRO, P. A. O.
SECOLIN, R.
Citação
NEURORADIOLOGY JOURNAL, v.30, n.5, p.477-485, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction The search for a reliable neuroimaging biomarker in Alzheimer's disease is a matter of intense research. The presence of cerebral microbleeds seems to be a potential biomarker. However, it is not clear if the presence of microbleeds has clinical usefulness to differentiate mild Alzheimer's disease and amnestic mild cognitive impairment from normal aging. We aimed to verify if microbleed prevalence differs among three groups: mild Alzheimer's disease, amnestic mild cognitive impairment due to Alzheimer's disease, and normal controls. Moreover, we studied whether microbleeds were associated with apolipoprotein E allele ϵ4 status, cerebrospinal fluid amyloid-beta, total and phosphorylated tau protein levels, vascular factors, and cognition. Methods Twenty-eight mild Alzheimer's disease patients, 34 with amnestic mild cognitive impairment and 36 cognitively normal elderly subjects underwent: magnetic resonance imaging with a susceptibility-weighted imaging sequence on a 3T scanner, apolipoprotein E genotyping and a full neuropsychological evaluation. Only amnestic mild cognitive impairment and mild Alzheimer's disease underwent cerebrospinal fluid analysis. We compared the groups and verified if microbleeds were predicted by all other variables. Results Mild Alzheimer's disease presented a higher prevalence of apolipoprotein E allele ϵ4 in relation to amnestic mild cognitive impairment and control group. No significant differences were found between groups when considering microbleed presence. Logistic regression tests failed to find any relationship between microbleeds and the variables. We performed three different regression models using different independent variables: Model 1 - amyloid-beta, phosphorylated tau protein, total tau, apolipoprotein E allele ϵ4 status, age, and sex; Model 2 - vascular risk factors, age, and sex; Model 3 - cognitive scores sex, age, and education. Conclusion Although microbleeds might be related to the Alzheimer's disease process, their presence is not a good candidate for a neuroimaging biomarker of the disease, especially in its early phases. © 2017 SAGE Publications.
Palavras-chave
Alzheimer's disease, biomarkers, Microbleeds, mild cognitive impairment
Referências
  1. (2016) 2016 Alzheimer's Disease Facts and Figures Report. Alzheimers Dement, 12, pp. 459-509. , Alziheimer's Association
  2. Eckman, C.B., Eckman, E.A., An update on the amyloid hypothesis (2007) Neurol Clin, 25, pp. 669-682
  3. Den Heijer, T., Van Der Lijn, F., Koudstaal, P.J., A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline (2010) Brain, 133, pp. 1163-1172
  4. Martinez-Ramirez, S., Greenberg, S.M., Viswanathan, A., Cerebral microbleeds: Overview and implications in cognitive impairment (2014) Alzheimers Res Ther, 6, p. 33. , DOI: 10.1186/alzrt263
  5. Vernooij, M.W., Van Der Lugt, A., Ikram, M.A., Prevalence and risk factors of cerebral microbleeds: The Rotterdam Scan Study (2008) Neurology, 70, pp. 1208-1214
  6. Morris, J.C., The Clinical Dementia Rating (CDR): Current version and scoring rules (1993) Neurology, 43, pp. 2412-2414
  7. Attems, J., Sporadic cerebral amyloid angiopathy: Pathology, clinical implications, and possible pathomechanisms (2005) Acta Neuropathol, 110, pp. 345-359
  8. Irizarry, M.C., Biomarkers of Alzheimer disease in plasma (2004) NeuroRx, 1, pp. 226-234
  9. Cordonnier, C., Al-Shahi Salman, R., Wardlaw, J., Spontaneous brain microbleeds: Systematic review, subgroup analyses and standards for study design and reporting (2007) Brain, 130, pp. 1988-2003
  10. Nakata-Kudo, Y., Mizuno, T., Yamada, K., Microbleeds in Alzheimer disease are more related to cerebral amyloid angiopathy than cerebrovascular disease (2006) Dement Geriatr Cogn Disord, 22, pp. 8-14
  11. Fazekas, F., Kleinert, R., Roob, G., Histopathologic analysis of foci of signal loss on gradient-echo T2-weighted MR images in patients with spontaneous intracerebral hemorrhage: Evidence of microangiopathy-related microbleeds (1999) AJNR Am J Neuroradiol, 20, pp. 637-642
  12. Seo, S.W., Hwa Lee, B., Kim, E.J., Clinical significance of microbleeds in subcortical vascular dementia (2007) Stroke, 38, pp. 1949-1951
  13. Pettersen, J.A., Sathiyamoorthy, G., Gao, F.Q., Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study (2008) Arch Neurol, 65, pp. 790-795
  14. Goos, J.D., Kester, M.I., Barkhof, F., Patients with Alzheimer disease with multiple microbleeds: Relation with cerebrospinal fluid biomarkers and cognition (2009) Stroke, 40, pp. 3455-3460
  15. Chiang, G.C., Cruz Hernandez, J.C., Kantarci, K., Cerebral microbleeds, CSF p-tau, and cognitive decline: Significance of anatomic distribution (2015) AJNR Am J Neuroradiol, 36, pp. 1635-1641
  16. McKhann, G.M., Knopman, D.S., Chertkow, H., The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 263-269
  17. Albert, M.S., DeKosky, S.T., Dickson, D., The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease (2011) Alzheimers Dement, 7, pp. 270-279
  18. Forlenza, O.V., Radanovic, M., Talib, L.L., Cerebrospinal fluid biomarkers in Alzheimer's disease: Diagnostic accuracy and prediction of dementia (2015) Alzheimers Dement (Amst), 1, pp. 455-463
  19. Brucki, S.M., Nitrini, R., Caramelli, P., Suggestions for utilization of the mini-mental state examination in Brazil (2003) Arq Neuropsiquiatr, 61, pp. 777-781
  20. Fazekas, F., Chawluk, J., Alavi, A., MRI signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging (1987) AJNR Am J Neuroradiol, 8, pp. 421-426
  21. Hachinski, V., Iadecola, C., Petersen, R.C., National Institute of Neurological Disorders and Stroke-Canadian Stroke Network (2006) Stroke, 37, pp. 2220-2241
  22. Folstein, M.F., Folstein, S.E., McHugh, P.R., Mini-mental state"". A practical method for grading the cognitive state of patients for the clinician (1975) J Psychiatr Res, 12, pp. 189-198
  23. Malloy-Diniz, L.F., Lasmar, V.A., Gazinelli Lde, S., The Rey Auditory-Verbal Learning Test: Applicability for the Brazilian elderly population (2007) Rev Bras Psiquiatr, 29, pp. 324-329
  24. Christensen, A.-L., (1975) Luria's Neuropsychological Investigation, Manual and Test Material, , 4th ed. Copenhagen: Munksgaard
  25. Ratcliff, G., Spatial thought, mental rotation and the right cerebral hemisphere (1979) Neuropsychologia, 17, pp. 49-54
  26. Osterrieth the test of copying a complex figure: A contribution to the study of perception and memory (1944) Arch Psychol, 30, pp. 206-356
  27. Reitan, R., Validity of the Trail Making Test as an indicator of organic brain damage (1958) Percept Mot Skills, 8, pp. 271-276
  28. Stroop, J.R., Studies of interference in serial verbal reactions (1935) J Exp Psychol, 18, pp. 643-662
  29. Kaplan, E., Goodglass, H., Weintraub, S., (1983) The Boston Naming Test, , 2nd ed. Philadelphia: Lea & Febiger
  30. Christensen, P., Guilford, J., (1959) Manual for the Christensen Guilford Fluency Tests, , 2nd ed. Beverly Hills, California: Sheridan Supply
  31. Cummings, J.L., Mega, M., Gray, K., The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia (1994) Neurology, 44, pp. 2308-2314
  32. Pfeffer, R.I., Kurosaki, T.T., Harrah, C.H., Jr., Measurement of functional activities in older adults in the community (1982) J Gerontol, 37, pp. 323-329
  33. Cordonnier, C., Van Der Flier, W.M., Brain microbleeds and Alzheimer's disease: Innocent observation or key player? (2011) Brain, 134, pp. 335-344
  34. Sepehry, A.A., Lang, D., Hsiung, G.Y., Prevalence of brain microbleeds in Alzheimer Disease: A systematic review and meta-analysis on the influence of neuroimaging techniques (2016) AJNR Am J Neuroradiol, 37, pp. 215-222
  35. Shams, S., Martola, J., Granberg, T., Cerebral microbleeds: Different prevalence, topography, and risk factors depending on dementia diagnosis-the Karolinska Imaging Dementia Study (2015) AJNR Am J Neuroradiol, 36, pp. 661-666
  36. Belinson, H., Michaelson, D.M., Pathological synergism between amyloid-beta and apolipoprotein E4-the most prevalent yet understudied genetic risk factor for Alzheimer's disease (2009) J Alzheimers Dis, 17, pp. 469-481
  37. Hanyu, H., Tanaka, Y., Shimizu, S., Cerebral microbleeds in Alzheimer's disease (2003) J Neurol, 250, pp. 1496-1497
  38. Petersen, R.C., Parisi, J.E., Dickson, D.W., Neuropathologic features of amnestic mild cognitive impairment (2006) Arch Neurol, 63, pp. 665-672
  39. Cacciottolo, M., Morgan, T., Finch, C., Rust on the brain from microbleeds and its relevance to Alzheimer Studies: Invited commentary on Cacciottolo Neurobiology of Aging, 2016 (2016) J Alzheimers Dis Parkinsonism, 6. , DOI: 10.4172/2161-0460.1000287
  40. Skoog, I., Lernfelt, B., Landahl, S., 15-Year longitudinal study of blood pressure and dementia (1996) Lancet, 347, pp. 1141-1145
  41. Biessels, G.J., Deary, I.J., Ryan, C.M., Cognition and diabetes: A lifespan perspective (2008) Lancet Neurol, 7, pp. 184-190
  42. Li, G., Shofer, J.B., Kukull, W.A., Serum cholesterol and risk of Alzheimer disease: A community-based cohort study (2005) Neurology, 65, pp. 1045-1050
  43. Greenberg, S.M., Vernooij, M.W., Cordonnier, C., Cerebral microbleeds: A field guide to their detection and interpretation (2009) Lancet Neurol, 8, pp. 165-174
  44. Nakata, Y., Shiga, K., Yoshikawa, K., Subclinical brain hemorrhages in Alzheimer's disease: Evaluation by magnetic resonance T2∗-weighted images (2002) Ann N y Acad Sci, 977, pp. 169-172
  45. Akoudad, S., De Groot, M., Koudstaal, P.J., Cerebral microbleeds are related to loss of white matter structural integrity (2013) Neurology, 81, pp. 1930-1937