Detection of RNA-Dependent RNA Polymerase of Hubei Reo-Like Virus 7 by Next-Generation Sequencing in Aedes aegypti and Culex quinquefasciatus Mosquitoes from Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
RIBEIRO, Geovani de Oliveira
MONTEIRO, Fred Julio Costa
REGO, Marlisson Octavio da S.
RIBEIRO, Edcelha Soares D'Athaide
CASTRO, Daniela Funayama de
CASEIRO, Marcos Montani
MARINHO, Robson dos Santos Souza
DENG, Xutao
Citação
VIRUSES-BASEL, v.11, n.2, article ID 147, 8p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Advancements in next-generation sequencing and bioinformatics have expanded our knowledge of the diversity of viruses (pathogens and non-pathogens) harbored by mosquitoes. Hubei reo-like virus 7 (HRLV 7) was recently detected by the virome analysis of fecal samples from migratory birds in Australia. We now report the detection of RNA-dependent RNA polymerase sequences of HRLV 7 in pools of Aedes aegypti and Culex quinquefasciatus mosquitoes species from the Brazilian Amazon forest. Phylogenetic inferences indicated that all HRLV 7 strains fall within the same independent clade. In addition, HRLV 7 shared a close ancestral lineage with the Dinovernavirus genus of the Reoviridae family. Our findings indicate that HRLV 7 is present in two species of mosquitoes.
Palavras-chave
Hubei reo-like virus 7, reovirus, RNA-dependent RNA polymerase, metagenomic, Aedes aegypti, Culex quinquefasciatus, mosquitoes, insect-viruses, Amazon forest, arbovirus, birds, Brazil
Referências
  1. Attoui H, 2002, J GEN VIROL, V83, P1941, DOI 10.1099/0022-1317-83-8-1941
  2. Attoui H, 2012, VIRUS TAXONOMY, P541
  3. Auguste AJ, 2015, J VIROL, V89, P676, DOI 10.1128/JVI.02264-14
  4. Consoli R, 1994, PRINCIPAIS MOSQUITOS
  5. da Costa AC, 2017, EMERG INFECT DIS, V23, P1742, DOI 10.3201/eid2310.170307
  6. Delwart EL, 2007, REV MED VIROL, V17, P115, DOI 10.1002/rmv.532
  7. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  8. Depoux A, 2018, PUBLIC HEALTH REV, V39, DOI 10.1186/s40985-018-0087-6
  9. Fauver JR, 2016, VIROLOGY, V498, P288, DOI 10.1016/j.virol.2016.07.031
  10. Goldani LZ, 2017, BRAZ J INFECT DIS, V21, P123, DOI 10.1016/j.bjid.2017.02.004
  11. Guindon S, 2010, SYST BIOL, V59, P307, DOI 10.1093/sysbio/syq010
  12. Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI 10.1021/BK-1999-0734.CH008
  13. Katoh K, 2017, BRIEF BIOINFORM, DOI [10.1093/bib/bbx108, DOI 10.1093/BIB/BBX108]
  14. Kumar S, 2018, MOL BIOL EVOL, V35, P1, DOI [10.1093/molbev/msy096, 10.1093/molbev/msx313, 10.1093/molbey/msy096]
  15. Li C, 2015, ELIFE, V4, DOI 10.7554/eLife.06587
  16. Lim ES, 2015, NAT MED, V21, P1228, DOI 10.1038/nm.3950
  17. Moormann AM, 2011, CURR OPIN INFECT DIS, V24, P435, DOI 10.1097/QCO.0b013e328349ac4f
  18. Novella IS, 2014, CURR OPIN VIROL, V9, P143, DOI 10.1016/j.coviro.2014.09.017
  19. Paixao ES, 2018, BMJ GLOB HEALTH, V3, DOI 10.1136/bmjgh-2017-000530
  20. Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083
  21. Rossetto EV, 2017, REV INST MED TROP SP, V59, DOI [10.1590/S1678-9946201759017, 10.1590/s1678-9946201759017]
  22. Roux S, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01086-2
  23. Sadeghi M, 2018, VIROLOGY, V523, P74, DOI 10.1016/j.virol.2018.07.029
  24. Shi M, 2017, J VIROL, V91, DOI 10.1128/JVI.00680-17
  25. Shi M, 2016, NATURE, V540, P539, DOI 10.1038/nature20167
  26. Temmam S, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8030077
  27. Vibin J, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-26851-1
  28. Zablocki O, 2014, APPL ENVIRON MICROB, V80, P6888, DOI 10.1128/AEM.01525-14